

asyncio: Notes for Developers

This is an unofficial document for developing on Python’s asyncio.

	History of asyncio
	PEPs

	Releases

	asyncio Concepts

	asyncio library files
	Alphabetical

	By functionality

History of asyncio

PEPs

	PEP 3156 [https://www.python.org/dev/peps/pep-3156/] Asynchronous IO Support Rebooted: the “asyncio” Module

	source [https://github.com/python/peps/blob/master/pep-3156.txt]

	Abstract: This is a proposal for asynchronous I/O in Python 3, starting at Python 3.3. Consider this the concrete proposal that is missing from PEP 3153. The proposal includes a pluggable event loop, transport and protocol abstractions similar to those in Twisted, and a higher-level scheduler based on yield from (PEP 380). The proposed package name is ``asyncio`.

	PEP 492 [https://www.python.org/dev/peps/pep-0492/] Coroutines with async and await syntax

	source [https://github.com/python/peps/blob/master/pep-0492.txt]

	Abstract: The growth of Internet and general connectivity has triggered the proportionate need for responsive and scalable code. This proposal aims to answer that need by making writing explicitly asynchronous, concurrent Python code easier and more Pythonic.

It is proposed to make coroutines a proper standalone concept in Python, and introduce new supporting syntax. The ultimate goal is to help establish a common, easily approachable, mental model of asynchronous programming in Python and make it as close to synchronous programming as possible.

This PEP assumes that the asynchronous tasks are scheduled and coordinated by an Event Loop similar to that of stdlib module asyncio.events.AbstractEventLoop. While the PEP is not tied to any specific Event Loop implementation, it is relevant only to the kind of coroutine that uses yield as a signal to the scheduler, indicating that the coroutine will be waiting until an event (such as IO) is completed.

	PEP 525 [https://www.python.org/dev/peps/pep-0525/] Asynchronous Generators

	source [https://github.com/python/peps/blob/master/pep-0525.txt]

	Abstract: PEP 492 introduced support for native coroutines and async/await syntax to Python 3.5. It is proposed here to extend Python’s asynchronous capabilities by adding support for asynchronous generators.

	PEP 530 [https://www.python.org/dev/peps/pep-0530/] Asynchronous comprehensions

	source [https://github.com/python/peps/blob/master/pep-0530.txt]

	Abstract: PEP 492 and PEP 525 introduce support for native coroutines and asynchronous generators using async / await syntax. This PEP proposes to add asynchronous versions of list, set, dict comprehensions and generator expressions.

	PEP 567 [https://www.python.org/dev/peps/pep-0567/] Context Variables

	source [https://github.com/python/peps/blob/master/pep-0530.txt]

	Abstract: This PEP proposes a new contextvars module and a set of new CPython C APIs to support context variables. This concept is similar to thread-local storage (TLS), but, unlike TLS, it also allows correctly keeping track of values per asynchronous task, e.g. asyncio.Task.

This proposal is a simplified version of PEP 550. The key difference is that this PEP is concerned only with solving the case for asynchronous tasks, not for generators. There are no proposed modifications to any built-in types or to the interpreter.

This proposal is not strictly related to Python Context Managers. Although it does provide a mechanism that can be used by Context Managers to store their state.

Releases

	3.4

	3.5

	3.6

	3.7

	3.8 (TBD)

asyncio Concepts

	What is a coroutine?

	What is an event loop?

	When to use a Future or a Task?

	Callbacks

	Why would I set a policy?

	Why would I use a context?

	How do I use an async comprehension?

	Why choose asyncio instead of many threads?

asyncio library files

Alphabetical

	file
	purpose

	init.py
	

	base_events.py
	Base implementation of event loop

	base_futures.py
	Check for a future and helper functions

	base_subprocess.py
	Base subprocess transport and r/w pipe protocols

	base_tasks.py
	task and its stack info

	constants.py
	misc constants for connections and comms

	coroutines.py
	coroutine helpers and wrapper

	events.py
	Event loop abstract classes and handles

	format_helpers.py
	callback format helpers

	futures.py
	Future class

	locks.py
	lock primitives, context, Event, Condition, Semaphore, BoundedSemaphore

	log.py
	logger for asyncio

	proactor_events.py
	event loop using "notify on completion" mux; windows

	protocols.py
	Protocol base classes

	queues.py
	queues - useful for producer/consumer

	runners.py
	run a coroutine

	selector_events.py
	event loop using "notify-when-ready" mux; unix

	ssl_proto.py
	SSL protocol and pipe

	streams.py
	Stream readers and writers

	subprocess.py
	subprocess readers and writers

	tasks.py
	Support for tasks, coroutines and the scheduler; Task - coroutine wrapped in a Future

	transports.py
	Base class for transports; types of transports

	unix_events.py
	Selector event loop for Unix with signal handling

	windows_events.py
	Selector and proactor event loops for Windows

	windows_utils.py
	Windows helper utilities

By functionality

	file
	purpose

	Event Loop
	

	base_events.py
	Base implementation of event loop

	events.py
	Event loop abstract classes and handles

	selector_events.py
	event loop using "notify-when-ready" mux; unix

	proactor_events.py
	event loop using "notify on completion" mux; windows

	unix_events.py
	Selector event loop for Unix with signal handling

	windows_events.py
	Selector and proactor event loops for Windows

	Futures
	

	base_futures.py
	Check for a future and helper functions

	futures.py
	Future class

	Coroutines
	

	coroutines.py
	coroutine helpers and wrapper

	Tasks
	

	base_tasks.py
	task and its stack info

	tasks.py
	Support for tasks, coroutines and the scheduler; Task - coroutine wrapped in a Future

	Subprocesses
	

	base_subprocess.py
	Base subprocess transport and r/w pipe protocols

	subprocess.py
	subprocess readers and writers

	Comms
	

	runners.py
	run a coroutine

	transports.py
	Base class for transports; types of transports

	protocols.py
	Protocol base classes

	ssl_proto.py
	SSL protocol and pipe

	streams.py
	Stream readers and writers

	locks.py
	lock primitives, context, Event, Condition, Semaphore, BoundedSemaphore

	Implementations
	

	format_helpers.py
	callback format helpers

	queues.py
	queues - useful for producer/consumer

	Utilities
	

	log.py
	logger for asyncio

	constants.py
	misc constants for connections and comms

	windows_utils.py
	Windows helper utilities

	init.py
	

 Python Module Index

 a

 		 	

 		
 a	

 	
 	
 asynchat	
 Support for asynchronous command/response protocols.

 	
 	
 asyncio	
 Asynchronous I/O, event loop, coroutines and tasks.

 	
 	
 asyncore	
 A base class for developing asynchronous socket handling
services.

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | W

A

 	
 	abort() (asyncio.DatagramTransport method)

 	(asyncio.WriteTransport method)

 	AbstractEventLoop (class in asyncio)

 	AbstractEventLoopPolicy (class in asyncio)

 	accept() (asyncore.dispatcher method)

 	add_done_callback() (asyncio.Future method)

 	add_reader() (asyncio.AbstractEventLoop method)

 	add_signal_handler() (asyncio.AbstractEventLoop method)

 	add_writer() (asyncio.AbstractEventLoop method)

 	all_tasks() (asyncio.Task class method)

 	(in module asyncio)

 	
 	as_completed() (in module asyncio)

 	async_chat (class in asynchat)

 	async_chat.ac_in_buffer_size (in module asynchat)

 	async_chat.ac_out_buffer_size (in module asynchat)

 	asynchat (module)

 	asyncio (module)

 	asyncio.subprocess.DEVNULL (in module asyncio)

 	asyncio.subprocess.PIPE (in module asyncio)

 	asyncio.subprocess.Process (class in asyncio)

 	asyncio.subprocess.STDOUT (in module asyncio)

 	asyncore (module)

 	at_eof() (asyncio.StreamReader method)

B

 	
 	BaseEventLoop (class in asyncio)

 	BaseSubprocessTransport (class in asyncio)

 	BaseTransport (class in asyncio)

 	
 	bind() (asyncore.dispatcher method)

 	BoundedSemaphore (class in asyncio)

 	buffer_updated() (asyncio.BufferedProtocol method)

 	BufferedProtocol (class in asyncio)

C

 	
 	call_at() (asyncio.AbstractEventLoop method)

 	call_exception_handler() (asyncio.AbstractEventLoop method)

 	call_later() (asyncio.AbstractEventLoop method)

 	call_soon() (asyncio.AbstractEventLoop method)

 	call_soon_threadsafe() (asyncio.AbstractEventLoop method)

 	can_write_eof() (asyncio.StreamWriter method)

 	(asyncio.WriteTransport method)

 	cancel() (asyncio.Future method)

 	(asyncio.Handle method)

 	(asyncio.Task method)

 	cancelled() (asyncio.Future method)

 	(asyncio.Handle method)

 	clear() (asyncio.Event method)

 	close() (asyncio.AbstractEventLoop method)

 	(asyncio.BaseSubprocessTransport method)

 	(asyncio.BaseTransport method)

 	(asyncio.Server method)

 	(asyncio.StreamWriter method)

 	(asyncore.dispatcher method)

 	
 	close_when_done() (asynchat.async_chat method)

 	collect_incoming_data() (asynchat.async_chat method)

 	Condition (class in asyncio)

 	connect() (asyncore.dispatcher method)

 	connection_lost() (asyncio.BaseProtocol method)

 	connection_made() (asyncio.BaseProtocol method)

 	consumed (asyncio.LimitOverrunError attribute)

 	coroutine() (in module asyncio)

 	create_future() (asyncio.AbstractEventLoop method)

 	create_socket() (asyncore.dispatcher method)

 	create_task() (asyncio.AbstractEventLoop method)

 	(in module asyncio)

 	current_task() (asyncio.Task class method)

 	(in module asyncio)

D

 	
 	data_received() (asyncio.Protocol method)

 	datagram_received() (asyncio.DatagramProtocol method)

 	DatagramProtocol (class in asyncio)

 	default_exception_handler() (asyncio.AbstractEventLoop method)

 	
 	discard_buffers() (asynchat.async_chat method)

 	dispatcher (class in asyncore)

 	dispatcher_with_send (class in asyncore)

 	done() (asyncio.Future method)

E

 	
 	empty() (asyncio.Queue method)

 	ensure_future() (in module asyncio)

 	
 environment variable

 	PYTHONASYNCIODEBUG, [1]

 	eof_received() (asyncio.BufferedProtocol method)

 	(asyncio.Protocol method)

 	
 	error_received() (asyncio.DatagramProtocol method)

 	Event (class in asyncio)

 	exception() (asyncio.Future method)

 	(asyncio.StreamReader method)

 	expected (asyncio.IncompleteReadError attribute)

F

 	
 	feed_data() (asyncio.StreamReader method)

 	feed_eof() (asyncio.StreamReader method)

 	file_dispatcher (class in asyncore)

 	
 	file_wrapper (class in asyncore)

 	found_terminator() (asynchat.async_chat method)

 	full() (asyncio.Queue method)

 	Future (class in asyncio)

G

 	
 	gather() (in module asyncio)

 	get_buffer() (asyncio.BufferedProtocol method)

 	get_debug() (asyncio.AbstractEventLoop method)

 	get_event_loop() (asyncio.AbstractEventLoopPolicy method)

 	(in module asyncio)

 	get_event_loop_policy() (in module asyncio)

 	get_exception_handler() (asyncio.AbstractEventLoop method)

 	get_extra_info() (asyncio.BaseTransport method)

 	(asyncio.StreamWriter method)

 	get_loop() (asyncio.Future method)

 	(asyncio.Server method)

 	
 	get_nowait() (asyncio.Queue method)

 	get_pid() (asyncio.BaseSubprocessTransport method)

 	get_pipe_transport() (asyncio.BaseSubprocessTransport method)

 	get_protocol() (asyncio.BaseTransport method)

 	get_returncode() (asyncio.BaseSubprocessTransport method)

 	get_running_loop() (in module asyncio)

 	get_stack() (asyncio.Task method)

 	get_task_factory() (asyncio.AbstractEventLoop method)

 	get_terminator() (asynchat.async_chat method)

 	get_write_buffer_limits() (asyncio.WriteTransport method)

 	get_write_buffer_size() (asyncio.WriteTransport method)

H

 	
 	Handle (class in asyncio)

 	handle_accept() (asyncore.dispatcher method)

 	handle_accepted() (asyncore.dispatcher method)

 	handle_close() (asyncore.dispatcher method)

 	
 	handle_connect() (asyncore.dispatcher method)

 	handle_error() (asyncore.dispatcher method)

 	handle_expt() (asyncore.dispatcher method)

 	handle_read() (asyncore.dispatcher method)

 	handle_write() (asyncore.dispatcher method)

I

 	
 	IncompleteReadError

 	InvalidStateError

 	is_closed() (asyncio.AbstractEventLoop method)

 	is_closing() (asyncio.BaseTransport method)

 	(asyncio.StreamWriter method)

 	
 	is_reading() (asyncio.ReadTransport method)

 	is_running() (asyncio.AbstractEventLoop method)

 	is_serving() (asyncio.Server method)

 	is_set() (asyncio.Event method)

 	iscoroutine() (in module asyncio)

 	iscoroutinefunction() (in module asyncio)

K

 	
 	kill() (asyncio.asyncio.subprocess.Process method)

 	(asyncio.BaseSubprocessTransport method)

L

 	
 	LifoQueue (class in asyncio)

 	LimitOverrunError

 	listen() (asyncore.dispatcher method)

 	Lock (class in asyncio)

 	
 	locked() (asyncio.Condition method)

 	(asyncio.Lock method)

 	(asyncio.Semaphore method)

 	loop() (in module asyncore)

M

 	
 	maxsize (asyncio.Queue attribute)

N

 	
 	new_event_loop() (asyncio.AbstractEventLoopPolicy method)

 	(in module asyncio)

 	
 	notify() (asyncio.Condition method)

 	notify_all() (asyncio.Condition method)

P

 	
 	partial (asyncio.IncompleteReadError attribute)

 	pause_reading() (asyncio.ReadTransport method)

 	pause_writing() (asyncio.BaseProtocol method)

 	pid (asyncio.asyncio.subprocess.Process attribute)

 	pipe_connection_lost() (asyncio.SubprocessProtocol method)

 	pipe_data_received() (asyncio.SubprocessProtocol method)

 	print_stack() (asyncio.Task method)

 	PriorityQueue (class in asyncio)

 	ProactorEventLoop (class in asyncio)

 	process_exited() (asyncio.SubprocessProtocol method)

 	Protocol (class in asyncio)

 	
 	push() (asynchat.async_chat method)

 	push_with_producer() (asynchat.async_chat method)

 	put_nowait() (asyncio.Queue method)

 	
 Python Enhancement Proposals

 	PEP 3153

 	PEP 3156

 	PEP 380, [1]

 	PEP 492

 	PEP 525

 	PEP 530, [1]

 	PEP 567, [1], [2], [3], [4], [5], [6]

 	PYTHONASYNCIODEBUG, [1]

Q

 	
 	qsize() (asyncio.Queue method)

 	Queue (class in asyncio)

 	
 	QueueEmpty

 	QueueFull

R

 	
 	readable() (asyncore.dispatcher method)

 	ReadTransport (class in asyncio)

 	recv() (asyncore.dispatcher method)

 	release() (asyncio.Condition method)

 	(asyncio.Lock method)

 	(asyncio.Semaphore method)

 	remove_done_callback() (asyncio.Future method)

 	remove_reader() (asyncio.AbstractEventLoop method)

 	remove_signal_handler() (asyncio.AbstractEventLoop method)

 	
 	remove_writer() (asyncio.AbstractEventLoop method)

 	result() (asyncio.Future method)

 	resume_reading() (asyncio.ReadTransport method)

 	resume_writing() (asyncio.BaseProtocol method)

 	returncode (asyncio.asyncio.subprocess.Process attribute)

 	run() (in module asyncio)

 	run_coroutine_threadsafe() (in module asyncio)

 	run_forever() (asyncio.AbstractEventLoop method)

 	run_in_executor() (asyncio.AbstractEventLoop method)

 	run_until_complete() (asyncio.AbstractEventLoop method)

S

 	
 	SelectorEventLoop (class in asyncio)

 	Semaphore (class in asyncio)

 	send() (asyncore.dispatcher method)

 	send_signal() (asyncio.asyncio.subprocess.Process method)

 	(asyncio.BaseSubprocessTransport method)

 	SendfileNotAvailableError

 	sendto() (asyncio.DatagramTransport method)

 	Server (class in asyncio)

 	set() (asyncio.Event method)

 	set_debug() (asyncio.AbstractEventLoop method)

 	set_default_executor() (asyncio.AbstractEventLoop method)

 	set_event_loop() (asyncio.AbstractEventLoopPolicy method)

 	(in module asyncio)

 	set_event_loop_policy() (in module asyncio)

 	set_exception() (asyncio.Future method)

 	(asyncio.StreamReader method)

 	
 	set_exception_handler() (asyncio.AbstractEventLoop method)

 	set_protocol() (asyncio.BaseTransport method)

 	set_result() (asyncio.Future method)

 	set_task_factory() (asyncio.AbstractEventLoop method)

 	set_terminator() (asynchat.async_chat method)

 	set_transport() (asyncio.StreamReader method)

 	set_write_buffer_limits() (asyncio.WriteTransport method)

 	sockets (asyncio.Server attribute)

 	stderr (asyncio.asyncio.subprocess.Process attribute)

 	stdin (asyncio.asyncio.subprocess.Process attribute)

 	stdout (asyncio.asyncio.subprocess.Process attribute)

 	stop() (asyncio.AbstractEventLoop method)

 	StreamReader (class in asyncio)

 	StreamReaderProtocol (class in asyncio)

 	StreamWriter (class in asyncio)

 	SubprocessProtocol (class in asyncio)

T

 	
 	Task (class in asyncio)

 	task_done() (asyncio.Queue method)

 	terminate() (asyncio.asyncio.subprocess.Process method)

 	(asyncio.BaseSubprocessTransport method)

 	
 	time() (asyncio.AbstractEventLoop method)

 	TimeoutError

 	TimerHandle (class in asyncio)

 	transport (asyncio.StreamWriter attribute)

W

 	
 	when() (asyncio.TimerHandle method)

 	wrap_future() (in module asyncio)

 	writable() (asyncore.dispatcher method)

 	write() (asyncio.StreamWriter method)

 	(asyncio.WriteTransport method)

 	
 	write_eof() (asyncio.StreamWriter method)

 	(asyncio.WriteTransport method)

 	writelines() (asyncio.StreamWriter method)

 	(asyncio.WriteTransport method)

 	WriteTransport (class in asyncio)

Getting Started with asyncio

Building Understanding

The terminology and jargon around concurrency, asynchronous communication,
and coroutines can obscure the different concepts of what the asyncio module provides in Python.

This section strives to break down the jargon and increase understanding about
asyncio by:

	sharing the ultimate goal of asyncio

	explaining asynchronous programming and its comparison to synchronous programming

	describing what a coroutine is

	creating a timeline of the different coroutine approaches used in Python’s history

An Important Goal

“The ultimate goal is to help establish a common, easily approachable, mental
model of asynchronous programming in Python and make it as close to
synchronous programming as possible.” - PEP 492

Understanding asynchronous programming

Why asynchronous programming?

	web growth

	many long lived connections

	efficiency of resources

Asynchronous vs Synchronous

synchronous - step by step through time; meticulous can’t go out of order

asynchronous - planning a party; workers do what they can do until they reach
a roadblock or bottleneck; when the roadblock or bottleneck is removed; continue
working

From Generators to Native Coroutines

Slightly complicating the understanding of coroutines in Python is that there exists
more than one implementation of coroutines.
As Python grew and evolved, the language added generators, then coroutines via enhanced generators, and
recently coroutines using async/await in the asyncio module.

Generators -> Coroutines (generator-based) via Enhanced Generators -> Coroutines (native) in asyncio

What is a Generator?

Generators are almost coroutines.
Generators can not yield control easily.
Pass values into a generator when it has suspended.
Generators don’t allow easy cleanup.

Using generators to create limited coroutines

Initially, when PEP 342 was accepted, coroutine behavior was created by enhancing Python Generators.
We’ll refer to these as generator-based coroutines.

PEP 342 Coroutines via Enhanced Generators
- added yield to generators
- yield (like pause in a video game)
- closely tied to generators

Native Coroutines

Beginning with PEP 492 and Python 3.6, a proper standalone concept of coroutines was added.
We refer to these as native coroutines, and these native coroutines rely on the async and
await keywords.

PEP 492 Coroutines with async/await syntax
- provides a proper standalone concept of coroutines
- adds syntax to support this concept

Most often, especially when writing new code, you will choose to use native coroutines (async and await).

Overview of the asyncio module

High-level asyncio

High-level async/await

	async and await are reserved keywords.

A basic tutorial

	show how to use asyncio.run()

	basic functions like asyncio.sleep()

	teach that asyncio programs are all about async/await and not about
callbacks or event loops

High-level APIs

Tasks, Streams, Subprocesses, few other functions

Low-level APIs

Preface

talk a bit about everything:
- what’s an event loop,
- what is a Future
- what is a Transport)

Futures

Event loop APIs

Transports and Protocols

(when to use and when not to use them)

Tutorials

	High-level networking server

	HTTP application

	Low-level protocol implementation using Transports

	etc

Resources

	Yury’s 2017 PyCon talk

	Other PyCon talks

	Caleb Hattingh’s Book

	Guido/Jesse asyncio paper

	Brett’s blog post

Background from release notes

	PEP 567 Context Variables: The new contextvars module and a set of
new C APIs introduce
support for context variables. Context variables are conceptually
similar to thread-local variables. Unlike TLS, context variables
support asynchronous code correctly.

The asyncio and decimal modules have been updated to use
and support context variables out of the box. Particularly the active
decimal context is now stored in a context variable, which allows
decimal operations to work with the correct context in asynchronous code.

asyncio

The asyncio module has received many new features, usability and
performance improvements. Notable changes
include:

	The new provisional asyncio.run() function can
be used to run a coroutine from synchronous code by automatically creating and
destroying the event loop.
(Contributed by Yury Selivanov in :issue:`32314`.)

	asyncio gained support for contextvars.
loop.call_soon(),
loop.call_soon_threadsafe(),
loop.call_later(),
loop.call_at(), and
Future.add_done_callback()
have a new optional keyword-only context parameter.
Tasks now track their context automatically.
See PEP 567 [https://www.python.org/dev/peps/pep-0567] for more details.
(Contributed by Yury Selivanov in :issue:`32436`.)

	The new asyncio.create_task() function has been added as a shortcut
to asyncio.get_event_loop().create_task().
(Contributed by Andrew Svetlov in :issue:`32311`.)

	The new loop.start_tls()
method can be used to upgrade an existing connection to TLS.
(Contributed by Yury Selivanov in :issue:`23749`.)

	The new loop.sock_recv_into()
method allows reading data from a socket directly into a provided buffer making
it possible to reduce data copies.
(Contributed by Antoine Pitrou in :issue:`31819`.)

	The new asyncio.current_task() function returns the currently running
Task instance, and the new asyncio.all_tasks()
function returns a set of all existing Task instances in a given loop.
The Task.current_task() and
Task.all_tasks() methods have been deprecated.
(Contributed by Andrew Svetlov in :issue:`32250`.)

	The new provisional BufferedProtocol class allows
implementing streaming protocols with manual control over the receive buffer.
(Contributed by Yury Selivanov in :issue:`32251`.)

	The new asyncio.get_running_loop() function returns the currently
running loop, and raises a RuntimeError if no loop is running.
This is in contrast with asyncio.get_event_loop(), which will create
a new event loop if none is running.
(Contributed by Yury Selivanov in :issue:`32269`.)

	The new StreamWriter.wait_closed()
coroutine method allows waiting until the stream writer is closed. The new
StreamWriter.is_closing() method
can be used to determine if the writer is closing.
(Contributed by Andrew Svetlov in :issue:`32391`.)

	The new loop.sock_sendfile()
coroutine method allows sending files using os.sendfile when possible.
(Contributed by Andrew Svetlov in :issue:`32410`.)

	The new Task.get_loop() and
Future.get_loop() methods
return the instance of the loop on which a task or a future were created.
Server.get_loop() allows doing the same for
asyncio.Server objects.
(Contributed by Yury Selivanov in :issue:`32415` and
Srinivas Reddy Thatiparthy in :issue:`32418`.)

	It is now possible to control how instances of asyncio.Server begin
serving. Previously, the server would start serving immediately when created.
The new start_serving keyword argument to
loop.create_server() and
loop.create_unix_server(),
as well as Server.start_serving(), and
Server.serve_forever()
can be used to decouple server instantiation and serving. The new
Server.is_serving() method returns True
if the server is serving. Server objects are now
asynchronous context managers:

srv = await loop.create_server(...)

async with srv:
 # some code

At this point, srv is closed and no longer accepts new connections.

(Contributed by Yury Selivanov in :issue:`32662`.)

	Callback objects returned by
loop.call_later()
gained the new when() method which
returns an absolute scheduled callback timestamp.
(Contributed by Andrew Svetlov in :issue:`32741`.)

	The loop.create_datagram_endpoint() method
gained support for Unix sockets.
(Contributed by Quentin Dawans in :issue:`31245`.)

	The loop.create_connection(),
loop.create_server(),
loop.create_unix_server(), and
loop.create_accepted_socket()
now accept the ssl_handshake_timeout keyword argument.
(Contributed by Neil Aspinall in :issue:`29970`.)

	The new Handle.cancelled() method returns
True if the callback was cancelled.
(Contributed by Marat Sharafutdinov in :issue:`31943`.)

	The asyncio source has been converted to use the
async/await syntax.
(Contributed by Andrew Svetlov in :issue:`32193`.)

	The new ReadTransport.is_reading()
method can be used to determine the reading state of the transport.
Additionally, calls to
ReadTransport.resume_reading()
and ReadTransport.pause_reading()
are now idempotent.
(Contributed by Yury Selivanov in :issue:`32356`.)

	Loop methods which accept socket paths now support passing
path-like objects.
(Contributed by Yury Selivanov in :issue:`32066`.)

	In asyncio TCP sockets on Linux are now created with TCP_NODELAY
flag set by default.
(Contributed by Yury Selivanov and Victor Stinner in :issue:`27456`.)

	Exceptions occurring in cancelled tasks are no longer logged.
(Contributed by Yury Selivanov in :issue:`30508`.)

Several asyncio APIs have been
deprecated.

The asyncio module received a number of notable optimizations for
commonly used functions:

	The asyncio.get_event_loop() function has been reimplemented in C to
make it up to 15 times faster.
(Contributed by Yury Selivanov in :issue:`32296`.)

	asyncio.Future callback management has been optimized.
(Contributed by Yury Selivanov in :issue:`32348`.)

	asyncio.gather() is now up to 15% faster.
(Contributed by Yury Selivanov in :issue:`32355`.)

	asyncio.sleep() is now up to 2 times faster when the delay
argument is zero or negative.
(Contributed by Andrew Svetlov in :issue:`32351`.)

	The performance overhead of asyncio debug mode has been reduced.
(Contributed by Antoine Pitrou in :issue:`31970`.)

deprecated

Support for directly await-ing instances of asyncio.Lock and
other asyncio synchronization primitives has been deprecated. An
asynchronous context manager must be used in order to acquire and release
the synchronization resource. See Using locks, conditions and semaphores in the async with statement for more
information.
(Contributed by Andrew Svetlov in :issue:`32253`.)

The asyncio.Task.current_task() and asyncio.Task.all_tasks()
methods have been deprecated.
(Contributed by Andrew Svetlov in :issue:`32250`.)

3.6
* The asyncio module has received new features, significant

usability and performance improvements, and a fair amount of bug fixes.
Starting with Python 3.6 the asyncio module is no longer provisional
and its API is considered stable.

PEP 525: Asynchronous Generators

PEP 492 [https://www.python.org/dev/peps/pep-0492] introduced support for native coroutines and async / await
syntax to Python 3.5. A notable limitation of the Python 3.5 implementation
is that it was not possible to use await and yield in the same
function body. In Python 3.6 this restriction has been lifted, making it
possible to define asynchronous generators:

async def ticker(delay, to):
 """Yield numbers from 0 to *to* every *delay* seconds."""
 for i in range(to):
 yield i
 await asyncio.sleep(delay)

The new syntax allows for faster and more concise code.

See also

	PEP 525 [https://www.python.org/dev/peps/pep-0525] – Asynchronous Generators

	PEP written and implemented by Yury Selivanov.

PEP 530: Asynchronous Comprehensions

PEP 530 [https://www.python.org/dev/peps/pep-0530] adds support for using async for in list, set, dict
comprehensions and generator expressions:

result = [i async for i in aiter() if i % 2]

Additionally, await expressions are supported in all kinds
of comprehensions:

result = [await fun() for fun in funcs if await condition()]

See also

	PEP 530 [https://www.python.org/dev/peps/pep-0530] – Asynchronous Comprehensions

	PEP written and implemented by Yury Selivanov.

asyncio

Starting with Python 3.6 the asyncio module is no longer provisional and its
API is considered stable.

Notable changes in the asyncio module since Python 3.5.0
(all backported to 3.5.x due to the provisional status):

	The get_event_loop() function has been changed to
always return the currently running loop when called from couroutines
and callbacks.
(Contributed by Yury Selivanov in :issue:`28613`.)

	The ensure_future() function and all functions that
use it, such as loop.run_until_complete(),
now accept all kinds of awaitable objects.
(Contributed by Yury Selivanov.)

	New run_coroutine_threadsafe() function to submit
coroutines to event loops from other threads.
(Contributed by Vincent Michel.)

	New Transport.is_closing()
method to check if the transport is closing or closed.
(Contributed by Yury Selivanov.)

	The loop.create_server()
method can now accept a list of hosts.
(Contributed by Yann Sionneau.)

	New loop.create_future()
method to create Future objects. This allows alternative event
loop implementations, such as
uvloop [https://github.com/MagicStack/uvloop], to provide a faster
asyncio.Future implementation.
(Contributed by Yury Selivanov in :issue:`27041`.)

	New loop.get_exception_handler()
method to get the current exception handler.
(Contributed by Yury Selivanov in :issue:`27040`.)

	New StreamReader.readuntil()
method to read data from the stream until a separator bytes
sequence appears.
(Contributed by Mark Korenberg.)

	The performance of StreamReader.readexactly()
has been improved.
(Contributed by Mark Korenberg in :issue:`28370`.)

	The loop.getaddrinfo()
method is optimized to avoid calling the system getaddrinfo
function if the address is already resolved.
(Contributed by A. Jesse Jiryu Davis.)

	The loop.stop()
method has been changed to stop the loop immediately after
the current iteration. Any new callbacks scheduled as a result
of the last iteration will be discarded.
(Contributed by Guido van Rossum in :issue:`25593`.)

	Future.set_exception
will now raise TypeError when passed an instance of
the StopIteration exception.
(Contributed by Chris Angelico in :issue:`26221`.)

	New loop.connect_accepted_socket()
method to be used by servers that accept connections outside of asyncio,
but that use asyncio to handle them.
(Contributed by Jim Fulton in :issue:`27392`.)

	TCP_NODELAY flag is now set for all TCP transports by default.
(Contributed by Yury Selivanov in :issue:`27456`.)

	New loop.shutdown_asyncgens()
to properly close pending asynchronous generators before closing the
loop.
(Contributed by Yury Selivanov in :issue:`28003`.)

	Future and Task
classes now have an optimized C implementation which makes asyncio
code up to 30% faster.
(Contributed by Yury Selivanov and INADA Naoki in :issue:`26081`
and :issue:`28544`.)

asyncio — Asynchronous I/O, event loop, coroutines and tasks

New in version 3.4.

Source code: :source:`Lib/asyncio/`

This module provides infrastructure for writing single-threaded concurrent
code using coroutines, multiplexing I/O access over sockets and other
resources, running network clients and servers, and other related primitives.
Here is a more detailed list of the package contents:

	a pluggable event loop with various system-specific
implementations;

	transport and protocol abstractions
(similar to those in Twisted [https://twistedmatrix.com/trac/]);

	concrete support for TCP, UDP, SSL, subprocess pipes, delayed calls, and
others (some may be system-dependent);

	a Future class that mimics the one in the concurrent.futures
module, but adapted for use with the event loop;

	coroutines and tasks based on yield from (PEP 380 [https://www.python.org/dev/peps/pep-0380]), to help write
concurrent code in a sequential fashion;

	cancellation support for Futures and coroutines;

	synchronization primitives for use between coroutines in
a single thread, mimicking those in the threading module;

	an interface for passing work off to a threadpool, for times when
you absolutely, positively have to use a library that makes blocking
I/O calls.

Asynchronous programming is more complex than classical “sequential”
programming: see the Develop with asyncio page which lists
common traps and explains how to avoid them. Enable the debug mode during development to detect common issues.

Table of contents:

See also

The asyncio module was designed in PEP 3156 [https://www.python.org/dev/peps/pep-3156]. For a
motivational primer on transports and protocols, see PEP 3153 [https://www.python.org/dev/peps/pep-3153].

Base Event Loop

Source code: :source:`Lib/asyncio/events.py`

The event loop is the central execution device provided by asyncio.
It provides multiple facilities, including:

	Registering, executing and cancelling delayed calls (timeouts).

	Creating client and server transports for various
kinds of communication.

	Launching subprocesses and the associated transports for communication with an external program.

	Delegating costly function calls to a pool of threads.

	
class asyncio.BaseEventLoop

	This class is an implementation detail. It is a subclass of
AbstractEventLoop and may be a base class of concrete
event loop implementations found in asyncio. It should not
be used directly; use AbstractEventLoop instead.
BaseEventLoop should not be subclassed by third-party code; the
internal interface is not stable.

	
class asyncio.AbstractEventLoop

	Abstract base class of event loops.

This class is not thread safe.

Run an event loop

	
AbstractEventLoop.run_forever()

	Run until stop() is called. If stop() is called before
run_forever() is called, this polls the I/O selector once
with a timeout of zero, runs all callbacks scheduled in response to
I/O events (and those that were already scheduled), and then exits.
If stop() is called while run_forever() is running,
this will run the current batch of callbacks and then exit. Note
that callbacks scheduled by callbacks will not run in that case;
they will run the next time run_forever() is called.

Changed in version 3.5.1.

	
AbstractEventLoop.run_until_complete(future)

	Run until the Future is done.

If the argument is a coroutine object, it is wrapped by
ensure_future().

Return the Future’s result, or raise its exception.

	
AbstractEventLoop.is_running()

	Returns running status of event loop.

	
AbstractEventLoop.stop()

	Stop running the event loop.

This causes run_forever() to exit at the next suitable
opportunity (see there for more details).

Changed in version 3.5.1.

	
AbstractEventLoop.is_closed()

	Returns True if the event loop was closed.

New in version 3.4.2.

	
AbstractEventLoop.close()

	Close the event loop. The loop must not be running. Pending
callbacks will be lost.

This clears the queues and shuts down the executor, but does not wait for
the executor to finish.

This is idempotent and irreversible. No other methods should be called after
this one.

Calls

Most asyncio functions don’t accept keywords. If you want to pass
keywords to your callback, use functools.partial(). For example,
loop.call_soon(functools.partial(print, "Hello", flush=True)) will call
print("Hello", flush=True).

Note

functools.partial() is better than lambda functions, because
asyncio can inspect functools.partial() object to display
parameters in debug mode, whereas lambda functions have a poor
representation.

	
AbstractEventLoop.call_soon(callback, *args, context=None)

	Arrange for a callback to be called as soon as possible. The callback is
called after call_soon() returns, when control returns to the event
loop.

This operates as a FIFO queue, callbacks
are called in the order in which they are registered. Each callback
will be called exactly once.

Any positional arguments after the callback will be passed to the
callback when it is called.

An optional keyword-only context argument allows specifying a custom
contextvars.Context for the callback to run in. The current
context is used when no context is provided.

An instance of asyncio.Handle is returned, which can be
used to cancel the callback.

Use functools.partial to pass keywords to the callback.

Changed in version 3.7: The context keyword-only parameter was added. See PEP 567 [https://www.python.org/dev/peps/pep-0567]
for more details.

	
AbstractEventLoop.call_soon_threadsafe(callback, *args, context=None)

	Like call_soon(), but thread safe.

See the concurrency and multithreading
section of the documentation.

Changed in version 3.7: The context keyword-only parameter was added. See PEP 567 [https://www.python.org/dev/peps/pep-0567]
for more details.

Delayed calls

The event loop has its own internal clock for computing timeouts.
Which clock is used depends on the (platform-specific) event loop
implementation; ideally it is a monotonic clock. This will generally be
a different clock than time.time().

Note

Timeouts (relative delay or absolute when) should not exceed one day.

	
AbstractEventLoop.call_later(delay, callback, *args, context=None)

	Arrange for the callback to be called after the given delay
seconds (either an int or float).

An instance of asyncio.TimerHandle is returned, which can be
used to cancel the callback.

callback will be called exactly once per call to call_later().
If two callbacks are scheduled for exactly the same time, it is
undefined which will be called first.

The optional positional args will be passed to the callback when it
is called. If you want the callback to be called with some named
arguments, use a closure or functools.partial().

An optional keyword-only context argument allows specifying a custom
contextvars.Context for the callback to run in. The current
context is used when no context is provided.

Use functools.partial to pass keywords to the callback.

Changed in version 3.7: The context keyword-only parameter was added. See PEP 567 [https://www.python.org/dev/peps/pep-0567]
for more details.

	
AbstractEventLoop.call_at(when, callback, *args, context=None)

	Arrange for the callback to be called at the given absolute timestamp
when (an int or float), using the same time reference as
AbstractEventLoop.time().

This method’s behavior is the same as call_later().

An instance of asyncio.TimerHandle is returned, which can be
used to cancel the callback.

Use functools.partial to pass keywords to the callback.

Changed in version 3.7: The context keyword-only parameter was added. See PEP 567 [https://www.python.org/dev/peps/pep-0567]
for more details.

	
AbstractEventLoop.time()

	Return the current time, as a float value, according to the
event loop’s internal clock.

See also

The asyncio.sleep() function.

Futures

	
AbstractEventLoop.create_future()

	Create an asyncio.Future object attached to the loop.

This is a preferred way to create futures in asyncio, as event
loop implementations can provide alternative implementations
of the Future class (with better performance or instrumentation).

New in version 3.5.2.

Tasks

	
AbstractEventLoop.create_task(coro)

	Schedule the execution of a coroutine object: wrap it in
a future. Return a Task object.

Third-party event loops can use their own subclass of Task for
interoperability. In this case, the result type is a subclass of
Task.

New in version 3.4.2.

	
AbstractEventLoop.set_task_factory(factory)

	Set a task factory that will be used by
AbstractEventLoop.create_task().

If factory is None the default task factory will be set.

If factory is a callable, it should have a signature matching
(loop, coro), where loop will be a reference to the active
event loop, coro will be a coroutine object. The callable
must return an asyncio.Future compatible object.

New in version 3.4.4.

	
AbstractEventLoop.get_task_factory()

	Return a task factory, or None if the default one is in use.

New in version 3.4.4.

Creating connections

Creating listening connections

File Transferring

TLS Upgrade

Watch file descriptors

On Windows with SelectorEventLoop, only socket handles are supported
(ex: pipe file descriptors are not supported).

On Windows with ProactorEventLoop, these methods are not supported.

	
AbstractEventLoop.add_reader(fd, callback, *args)

	Start watching the file descriptor for read availability and then call the
callback with specified arguments.

Use functools.partial to pass keywords to the callback.

	
AbstractEventLoop.remove_reader(fd)

	Stop watching the file descriptor for read availability.

	
AbstractEventLoop.add_writer(fd, callback, *args)

	Start watching the file descriptor for write availability and then call the
callback with specified arguments.

Use functools.partial to pass keywords to the callback.

	
AbstractEventLoop.remove_writer(fd)

	Stop watching the file descriptor for write availability.

The watch a file descriptor for read events
example uses the low-level AbstractEventLoop.add_reader() method to register
the file descriptor of a socket.

Low-level socket operations

Resolve host name

Changed in version 3.7: Both getaddrinfo and getnameinfo methods were always documented
to return a coroutine, but prior to Python 3.7 they were, in fact,
returning asyncio.Future objects. Starting with Python 3.7
both methods are coroutines.

Connect pipes

On Windows with SelectorEventLoop, these methods are not supported.
Use ProactorEventLoop to support pipes on Windows.

See also

The AbstractEventLoop.subprocess_exec() and
AbstractEventLoop.subprocess_shell() methods.

UNIX signals

Availability: UNIX only.

	
AbstractEventLoop.add_signal_handler(signum, callback, *args)

	Add a handler for a signal.

Raise ValueError if the signal number is invalid or uncatchable.
Raise RuntimeError if there is a problem setting up the handler.

Use functools.partial to pass keywords to the callback.

	
AbstractEventLoop.remove_signal_handler(sig)

	Remove a handler for a signal.

Return True if a signal handler was removed, False if not.

See also

The signal module.

Executor

Call a function in an Executor (pool of threads or
pool of processes). By default, an event loop uses a thread pool executor
(ThreadPoolExecutor).

	
AbstractEventLoop.run_in_executor(executor, func, *args)

	Arrange for a func to be called in the specified executor.

The executor argument should be an Executor
instance. The default executor is used if executor is None.

Use functools.partial to pass keywords to the *func*.

This method returns a asyncio.Future object.

Changed in version 3.5.3: BaseEventLoop.run_in_executor() no longer configures the
max_workers of the thread pool executor it creates, instead
leaving it up to the thread pool executor
(ThreadPoolExecutor) to set the
default.

	
AbstractEventLoop.set_default_executor(executor)

	Set the default executor used by run_in_executor().

Error Handling API

Allows customizing how exceptions are handled in the event loop.

	
AbstractEventLoop.set_exception_handler(handler)

	Set handler as the new event loop exception handler.

If handler is None, the default exception handler will
be set.

If handler is a callable object, it should have a
matching signature to (loop, context), where loop
will be a reference to the active event loop, context
will be a dict object (see call_exception_handler()
documentation for details about context).

	
AbstractEventLoop.get_exception_handler()

	Return the exception handler, or None if the default one
is in use.

New in version 3.5.2.

	
AbstractEventLoop.default_exception_handler(context)

	Default exception handler.

This is called when an exception occurs and no exception
handler is set, and can be called by a custom exception
handler that wants to defer to the default behavior.

context parameter has the same meaning as in
call_exception_handler().

	
AbstractEventLoop.call_exception_handler(context)

	Call the current event loop exception handler.

context is a dict object containing the following keys
(new keys may be introduced later):

	‘message’: Error message;

	‘exception’ (optional): Exception object;

	‘future’ (optional): asyncio.Future instance;

	‘handle’ (optional): asyncio.Handle instance;

	‘protocol’ (optional): Protocol instance;

	‘transport’ (optional): Transport instance;

	‘socket’ (optional): socket.socket instance.

Note

Note: this method should not be overloaded in subclassed
event loops. For any custom exception handling, use
set_exception_handler() method.

Debug mode

	
AbstractEventLoop.get_debug()

	Get the debug mode (bool) of the event loop.

The default value is True if the environment variable
PYTHONASYNCIODEBUG is set to a non-empty string, False
otherwise.

New in version 3.4.2.

	
AbstractEventLoop.set_debug(enabled: bool)

	Set the debug mode of the event loop.

New in version 3.4.2.

See also

The debug mode of asyncio.

Server

	
class asyncio.Server

	Server listening on sockets.

Object created by AbstractEventLoop.create_server(),
AbstractEventLoop.create_unix_server(), start_server(),
and start_unix_server() functions. Don’t instantiate the class
directly.

Server objects are asynchronous context managers. When used in an
async with statement, it’s guaranteed that the Server object is
closed and not accepting new connections when the async with
statement is completed:

srv = await loop.create_server(...)

async with srv:
 # some code

At this point, srv is closed and no longer accepts new connections.

Changed in version 3.7: Server object is an asynchronous context manager since Python 3.7.

	
close()

	Stop serving: close listening sockets and set the sockets
attribute to None.

The sockets that represent existing incoming client connections are left
open.

The server is closed asynchronously, use the wait_closed()
coroutine to wait until the server is closed.

	
get_loop()

	Gives the event loop associated with the server object.

New in version 3.7.

	
is_serving()

	Return True if the server is accepting new connections.

New in version 3.7.

	
sockets

	List of socket.socket objects the server is listening to, or
None if the server is closed.

Changed in version 3.7: Prior to Python 3.7 Server.sockets used to return the
internal list of server’s sockets directly. In 3.7 a copy
of that list is returned.

Handle

	
class asyncio.Handle

	A callback wrapper object returned by AbstractEventLoop.call_soon(),
AbstractEventLoop.call_soon_threadsafe().

	
cancel()

	Cancel the call. If the callback is already canceled or executed,
this method has no effect.

	
cancelled()

	Return True if the call was cancelled.

New in version 3.7.

	
class asyncio.TimerHandle

	A callback wrapper object returned by AbstractEventLoop.call_later(),
and AbstractEventLoop.call_at().

The class is inherited from Handle.

	
when()

	Return a scheduled callback time as float seconds.

The time is an absolute timestamp, using the same time
reference as AbstractEventLoop.time().

New in version 3.7.

SendfileNotAvailableError

	
exception asyncio.SendfileNotAvailableError

	Sendfile syscall is not available, subclass of RuntimeError.

Raised if the OS does not support sendfile syscall for
given socket or file type.

Event loop examples

Hello World with call_soon()

Example using the AbstractEventLoop.call_soon() method to schedule a
callback. The callback displays "Hello World" and then stops the event
loop:

import asyncio

def hello_world(loop):
 print('Hello World')
 loop.stop()

loop = asyncio.get_event_loop()

Schedule a call to hello_world()
loop.call_soon(hello_world, loop)

Blocking call interrupted by loop.stop()
loop.run_forever()
loop.close()

See also

The Hello World coroutine example
uses a coroutine.

Display the current date with call_later()

Example of callback displaying the current date every second. The callback uses
the AbstractEventLoop.call_later() method to reschedule itself during 5
seconds, and then stops the event loop:

import asyncio
import datetime

def display_date(end_time, loop):
 print(datetime.datetime.now())
 if (loop.time() + 1.0) < end_time:
 loop.call_later(1, display_date, end_time, loop)
 else:
 loop.stop()

loop = asyncio.get_event_loop()

Schedule the first call to display_date()
end_time = loop.time() + 5.0
loop.call_soon(display_date, end_time, loop)

Blocking call interrupted by loop.stop()
loop.run_forever()
loop.close()

See also

The coroutine displaying the current date example uses a coroutine.

Watch a file descriptor for read events

Wait until a file descriptor received some data using the
AbstractEventLoop.add_reader() method and then close the event loop:

import asyncio
from socket import socketpair

Create a pair of connected file descriptors
rsock, wsock = socketpair()
loop = asyncio.get_event_loop()

def reader():
 data = rsock.recv(100)
 print("Received:", data.decode())
 # We are done: unregister the file descriptor
 loop.remove_reader(rsock)
 # Stop the event loop
 loop.stop()

Register the file descriptor for read event
loop.add_reader(rsock, reader)

Simulate the reception of data from the network
loop.call_soon(wsock.send, 'abc'.encode())

Run the event loop
loop.run_forever()

We are done, close sockets and the event loop
rsock.close()
wsock.close()
loop.close()

See also

The register an open socket to wait for data using a protocol example uses a low-level protocol created by the
AbstractEventLoop.create_connection() method.

The register an open socket to wait for data using streams example uses high-level streams
created by the open_connection() function in a coroutine.

Set signal handlers for SIGINT and SIGTERM

Register handlers for signals SIGINT and SIGTERM using
the AbstractEventLoop.add_signal_handler() method:

import asyncio
import functools
import os
import signal

def ask_exit(signame):
 print("got signal %s: exit" % signame)
 loop.stop()

loop = asyncio.get_event_loop()
for signame in ('SIGINT', 'SIGTERM'):
 loop.add_signal_handler(getattr(signal, signame),
 functools.partial(ask_exit, signame))

print("Event loop running forever, press Ctrl+C to interrupt.")
print("pid %s: send SIGINT or SIGTERM to exit." % os.getpid())
try:
 loop.run_forever()
finally:
 loop.close()

This example only works on UNIX.

Event loops

Source code: :source:`Lib/asyncio/events.py`

Event loop functions

The following functions are convenient shortcuts to accessing the methods of the
global policy. Note that this provides access to the default policy, unless an
alternative policy was set by calling set_event_loop_policy() earlier in
the execution of the process.

	
asyncio.get_event_loop()

	Equivalent to calling get_event_loop_policy().get_event_loop().

	
asyncio.set_event_loop(loop)

	Equivalent to calling get_event_loop_policy().set_event_loop(loop).

	
asyncio.new_event_loop()

	Equivalent to calling get_event_loop_policy().new_event_loop().

	
asyncio.get_running_loop()

	Return the running event loop in the current OS thread. If there
is no running event loop a RuntimeError is raised.

New in version 3.7.

Available event loops

asyncio currently provides two implementations of event loops:
SelectorEventLoop and ProactorEventLoop.

	
class asyncio.SelectorEventLoop

	Event loop based on the selectors module. Subclass of
AbstractEventLoop.

Use the most efficient selector available on the platform.

On Windows, only sockets are supported (ex: pipes are not supported):
see the MSDN documentation of select [https://msdn.microsoft.com/en-us/library/windows/desktop/ms740141%28v=vs.85%29.aspx].

	
class asyncio.ProactorEventLoop

	Proactor event loop for Windows using “I/O Completion Ports” aka IOCP.
Subclass of AbstractEventLoop.

Availability: Windows.

See also

MSDN documentation on I/O Completion Ports [https://msdn.microsoft.com/en-us/library/windows/desktop/aa365198%28v=vs.85%29.aspx].

Example to use a ProactorEventLoop on Windows:

import asyncio, sys

if sys.platform == 'win32':
 loop = asyncio.ProactorEventLoop()
 asyncio.set_event_loop(loop)

Platform support

The asyncio module has been designed to be portable, but each platform
still has subtle differences and may not support all asyncio features.

Windows

Common limits of Windows event loops:

	create_unix_connection() and
create_unix_server() are not supported: the socket
family socket.AF_UNIX is specific to UNIX

	add_signal_handler() and
remove_signal_handler() are not supported

	EventLoopPolicy.set_child_watcher() is not supported.
ProactorEventLoop supports subprocesses. It has only one
implementation to watch child processes, there is no need to configure it.

SelectorEventLoop specific limits:

	SelectSelector is used which only supports sockets
and is limited to 512 sockets.

	add_reader() and add_writer() only
accept file descriptors of sockets

	Pipes are not supported
(ex: connect_read_pipe(),
connect_write_pipe())

	Subprocesses are not supported
(ex: subprocess_exec(),
subprocess_shell())

ProactorEventLoop specific limits:

	create_datagram_endpoint() (UDP) is not supported

	add_reader() and add_writer() are
not supported

The resolution of the monotonic clock on Windows is usually around 15.6 msec.
The best resolution is 0.5 msec. The resolution depends on the hardware
(availability of HPET [https://en.wikipedia.org/wiki/High_Precision_Event_Timer]) and on the Windows
configuration. See asyncio delayed calls.

Changed in version 3.5: ProactorEventLoop now supports SSL.

Mac OS X

Character devices like PTY are only well supported since Mavericks (Mac OS
10.9). They are not supported at all on Mac OS 10.5 and older.

On Mac OS 10.6, 10.7 and 10.8, the default event loop is
SelectorEventLoop which uses selectors.KqueueSelector.
selectors.KqueueSelector does not support character devices on these
versions. The SelectorEventLoop can be used with
SelectSelector or PollSelector to
support character devices on these versions of Mac OS X. Example:

import asyncio
import selectors

selector = selectors.SelectSelector()
loop = asyncio.SelectorEventLoop(selector)
asyncio.set_event_loop(loop)

Event loop policies and the default policy

Event loop management is abstracted with a policy pattern, to provide maximal
flexibility for custom platforms and frameworks. Throughout the execution of a
process, a single global policy object manages the event loops available to the
process based on the calling context. A policy is an object implementing the
AbstractEventLoopPolicy interface.

For most users of asyncio, policies never have to be dealt with
explicitly, since the default global policy is sufficient (see below).

The module-level functions
get_event_loop() and set_event_loop() provide convenient access to
event loops managed by the default policy.

Event loop policy interface

An event loop policy must implement the following interface:

	
class asyncio.AbstractEventLoopPolicy

	Event loop policy.

	
get_event_loop()

	Get the event loop for the current context.

Returns an event loop object implementing the AbstractEventLoop
interface.

Raises an exception in case no event loop has been set for the current
context and the current policy does not specify to create one. It must
never return None.

	
set_event_loop(loop)

	Set the event loop for the current context to loop.

	
new_event_loop()

	Create and return a new event loop object according to this policy’s
rules.

If there’s need to set this loop as the event loop for the current
context, set_event_loop() must be called explicitly.

The default policy defines context as the current thread, and manages an event
loop per thread that interacts with asyncio. An exception to this rule
happens when get_event_loop() is called from a
running future/coroutine, in which case it will return the current loop
running that future/coroutine.

If the current thread doesn’t already have an event loop associated with it,
the default policy’s get_event_loop() method
creates one when called from the main thread, but raises RuntimeError
otherwise.

Access to the global loop policy

	
asyncio.get_event_loop_policy()

	Get the current event loop policy.

	
asyncio.set_event_loop_policy(policy)

	Set the current event loop policy. If policy is None, the default
policy is restored.

Customizing the event loop policy

To implement a new event loop policy, it is recommended you subclass the
concrete default event loop policy DefaultEventLoopPolicy
and override the methods for which you want to change behavior, for example:

class MyEventLoopPolicy(asyncio.DefaultEventLoopPolicy):

 def get_event_loop(self):
 """Get the event loop.

 This may be None or an instance of EventLoop.
 """
 loop = super().get_event_loop()
 # Do something with loop ...
 return loop

asyncio.set_event_loop_policy(MyEventLoopPolicy())

Tasks and coroutines

Source code: :source:`Lib/asyncio/tasks.py`

Source code: :source:`Lib/asyncio/coroutines.py`

Coroutines

Coroutines used with asyncio may be implemented using the
async def statement, or by using generators.
The async def type of coroutine was added in Python 3.5, and
is recommended if there is no need to support older Python versions.

Generator-based coroutines should be decorated with @asyncio.coroutine, although this is not strictly enforced.
The decorator enables compatibility with async def coroutines,
and also serves as documentation. Generator-based
coroutines use the yield from syntax introduced in PEP 380 [https://www.python.org/dev/peps/pep-0380],
instead of the original yield syntax.

The word “coroutine”, like the word “generator”, is used for two
different (though related) concepts:

	The function that defines a coroutine
(a function definition using async def or
decorated with @asyncio.coroutine). If disambiguation is needed
we will call this a coroutine function (iscoroutinefunction()
returns True).

	The object obtained by calling a coroutine function. This object
represents a computation or an I/O operation (usually a combination)
that will complete eventually. If disambiguation is needed we will
call it a coroutine object (iscoroutine() returns True).

Things a coroutine can do:

	result = await future or result = yield from future –
suspends the coroutine until the
future is done, then returns the future’s result, or raises an
exception, which will be propagated. (If the future is cancelled,
it will raise a CancelledError exception.) Note that tasks are
futures, and everything said about futures also applies to tasks.

	result = await coroutine or result = yield from coroutine –
wait for another coroutine to
produce a result (or raise an exception, which will be propagated).
The coroutine expression must be a call to another coroutine.

	return expression – produce a result to the coroutine that is
waiting for this one using await or yield from.

	raise exception – raise an exception in the coroutine that is
waiting for this one using await or yield from.

Calling a coroutine does not start its code running –
the coroutine object returned by the call doesn’t do anything until you
schedule its execution. There are two basic ways to start it running:
call await coroutine or yield from coroutine from another coroutine
(assuming the other coroutine is already running!), or schedule its execution
using the ensure_future() function or the AbstractEventLoop.create_task()
method.

Coroutines (and tasks) can only run when the event loop is running.

	
@asyncio.coroutine

	Decorator to mark generator-based coroutines. This enables
the generator use yield from to call async
def coroutines, and also enables the generator to be called by
async def coroutines, for instance using an
await expression.

There is no need to decorate async def coroutines themselves.

If the generator is not yielded from before it is destroyed, an error
message is logged. See Detect coroutines never scheduled.

Note

In this documentation, some methods are documented as coroutines,
even if they are plain Python functions returning a Future.
This is intentional to have a freedom of tweaking the implementation
of these functions in the future. If such a function is needed to be
used in a callback-style code, wrap its result with ensure_future().

	
asyncio.run(coro, *, debug=False)

	This function runs the passed coroutine, taking care of
managing the asyncio event loop and finalizing asynchronous
generators.

This function cannot be called when another asyncio event loop is
running in the same thread.

If debug is True, the event loop will be run in debug mode.

This function always creates a new event loop and closes it at
the end. It should be used as a main entry point for asyncio
programs, and should ideally only be called once.

New in version 3.7: Important: this has been been added to asyncio in Python 3.7
on a provisional basis.

Example: Hello World coroutine

Example of coroutine displaying "Hello World":

import asyncio

async def hello_world():
 print("Hello World!")

asyncio.run(hello_world())

See also

The Hello World with call_soon()
example uses the AbstractEventLoop.call_soon() method to schedule a
callback.

Example: Coroutine displaying the current date

Example of coroutine displaying the current date every second during 5 seconds
using the sleep() function:

import asyncio
import datetime

async def display_date():
 loop = asyncio.get_running_loop()
 end_time = loop.time() + 5.0
 while True:
 print(datetime.datetime.now())
 if (loop.time() + 1.0) >= end_time:
 break
 await asyncio.sleep(1)

asyncio.run(display_date())

See also

The display the current date with call_later() example uses a callback with the
AbstractEventLoop.call_later() method.

Example: Chain coroutines

Example chaining coroutines:

import asyncio

async def compute(x, y):
 print("Compute %s + %s ..." % (x, y))
 await asyncio.sleep(1.0)
 return x + y

async def print_sum(x, y):
 result = await compute(x, y)
 print("%s + %s = %s" % (x, y, result))

loop = asyncio.get_event_loop()
loop.run_until_complete(print_sum(1, 2))
loop.close()

compute() is chained to print_sum(): print_sum() coroutine waits
until compute() is completed before returning its result.

Sequence diagram of the example:

[image: tulip_coro.png]
The “Task” is created by the AbstractEventLoop.run_until_complete() method
when it gets a coroutine object instead of a task.

The diagram shows the control flow, it does not describe exactly how things
work internally. For example, the sleep coroutine creates an internal future
which uses AbstractEventLoop.call_later() to wake up the task in 1 second.

InvalidStateError

	
exception asyncio.InvalidStateError

	The operation is not allowed in this state.

TimeoutError

	
exception asyncio.TimeoutError

	The operation exceeded the given deadline.

Note

This exception is different from the builtin TimeoutError exception!

Future

	
class asyncio.Future(*, loop=None)

	This class is almost compatible with concurrent.futures.Future.

Differences:

	result() and exception() do not take a timeout argument and
raise an exception when the future isn’t done yet.

	Callbacks registered with add_done_callback() are always called
via the event loop’s call_soon().

	This class is not compatible with the wait() and
as_completed() functions in the
concurrent.futures package.

This class is not thread safe.

	
cancel()

	Cancel the future and schedule callbacks.

If the future is already done or cancelled, return False. Otherwise,
change the future’s state to cancelled, schedule the callbacks and return
True.

	
cancelled()

	Return True if the future was cancelled.

	
done()

	Return True if the future is done.

Done means either that a result / exception are available, or that the
future was cancelled.

	
result()

	Return the result this future represents.

If the future has been cancelled, raises CancelledError. If the
future’s result isn’t yet available, raises InvalidStateError. If
the future is done and has an exception set, this exception is raised.

	
exception()

	Return the exception that was set on this future.

The exception (or None if no exception was set) is returned only if
the future is done. If the future has been cancelled, raises
CancelledError. If the future isn’t done yet, raises
InvalidStateError.

	
add_done_callback(callback, *, context=None)

	Add a callback to be run when the future becomes done.

The callback is called with a single argument - the future object. If the
future is already done when this is called, the callback is scheduled
with call_soon().

An optional keyword-only context argument allows specifying a custom
contextvars.Context for the callback to run in. The current
context is used when no context is provided.

Use functools.partial to pass parameters to the callback. For example,
fut.add_done_callback(functools.partial(print, "Future:",
flush=True)) will call print("Future:", fut, flush=True).

Changed in version 3.7: The context keyword-only parameter was added. See PEP 567 [https://www.python.org/dev/peps/pep-0567]
for more details.

	
remove_done_callback(fn)

	Remove all instances of a callback from the “call when done” list.

Returns the number of callbacks removed.

	
set_result(result)

	Mark the future done and set its result.

If the future is already done when this method is called, raises
InvalidStateError.

	
set_exception(exception)

	Mark the future done and set an exception.

If the future is already done when this method is called, raises
InvalidStateError.

	
get_loop()

	Return the event loop the future object is bound to.

New in version 3.7.

Example: Future with run_until_complete()

Example combining a Future and a coroutine function:

import asyncio

async def slow_operation(future):
 await asyncio.sleep(1)
 future.set_result('Future is done!')

loop = asyncio.get_event_loop()
future = asyncio.Future()
asyncio.ensure_future(slow_operation(future))
loop.run_until_complete(future)
print(future.result())
loop.close()

The coroutine function is responsible for the computation (which takes 1 second)
and it stores the result into the future. The
run_until_complete() method waits for the completion of
the future.

Note

The run_until_complete() method uses internally the
add_done_callback() method to be notified when the future is
done.

Example: Future with run_forever()

The previous example can be written differently using the
Future.add_done_callback() method to describe explicitly the control
flow:

import asyncio

async def slow_operation(future):
 await asyncio.sleep(1)
 future.set_result('Future is done!')

def got_result(future):
 print(future.result())
 loop.stop()

loop = asyncio.get_event_loop()
future = asyncio.Future()
asyncio.ensure_future(slow_operation(future))
future.add_done_callback(got_result)
try:
 loop.run_forever()
finally:
 loop.close()

In this example, the future is used to link slow_operation() to
got_result(): when slow_operation() is done, got_result() is called
with the result.

Task

	
asyncio.create_task(coro)

	Wrap a coroutine coro into a task and schedule
its execution. Return the task object.

The task is executed in get_running_loop() context,
RuntimeError is raised if there is no running loop in
current thread.

New in version 3.7.

	
class asyncio.Task(coro, *, loop=None)

	A unit for concurrent running of coroutines,
subclass of Future.

A task is responsible for executing a coroutine object in an event loop. If
the wrapped coroutine yields from a future, the task suspends the execution
of the wrapped coroutine and waits for the completion of the future. When
the future is done, the execution of the wrapped coroutine restarts with the
result or the exception of the future.

Event loops use cooperative scheduling: an event loop only runs one task at
a time. Other tasks may run in parallel if other event loops are
running in different threads. While a task waits for the completion of a
future, the event loop executes a new task.

The cancellation of a task is different from the cancellation of a
future. Calling cancel() will throw a
CancelledError to the wrapped
coroutine. cancelled() only returns True if the
wrapped coroutine did not catch the
CancelledError exception, or raised a
CancelledError exception.

If a pending task is destroyed, the execution of its wrapped coroutine did not complete. It is probably a bug and a warning is
logged: see Pending task destroyed.

Don’t directly create Task instances: use the create_task()
function or the AbstractEventLoop.create_task() method.

Tasks support the contextvars module. When a Task
is created it copies the current context and later runs its coroutine
in the copied context. See PEP 567 [https://www.python.org/dev/peps/pep-0567] for more details.

This class is not thread safe.

Changed in version 3.7: Added support for the contextvars module.

	
classmethod all_tasks(loop=None)

	Return a set of all tasks for an event loop.

By default all tasks for the current event loop are returned.

	
classmethod current_task(loop=None)

	Return the currently running task in an event loop or None.

By default the current task for the current event loop is returned.

None is returned when called not in the context of a Task.

	
cancel()

	Request that this task cancel itself.

This arranges for a CancelledError to be
thrown into the wrapped coroutine on the next cycle through the event
loop. The coroutine then has a chance to clean up or even deny the
request using try/except/finally.

Unlike Future.cancel(), this does not guarantee that the task
will be cancelled: the exception might be caught and acted upon, delaying
cancellation of the task or preventing cancellation completely. The task
may also return a value or raise a different exception.

Immediately after this method is called, cancelled() will
not return True (unless the task was already cancelled). A task will
be marked as cancelled when the wrapped coroutine terminates with a
CancelledError exception (even if
cancel() was not called).

	
get_stack(*, limit=None)

	Return the list of stack frames for this task’s coroutine.

If the coroutine is not done, this returns the stack where it is
suspended. If the coroutine has completed successfully or was
cancelled, this returns an empty list. If the coroutine was
terminated by an exception, this returns the list of traceback
frames.

The frames are always ordered from oldest to newest.

The optional limit gives the maximum number of frames to return; by
default all available frames are returned. Its meaning differs depending
on whether a stack or a traceback is returned: the newest frames of a
stack are returned, but the oldest frames of a traceback are returned.
(This matches the behavior of the traceback module.)

For reasons beyond our control, only one stack frame is returned for a
suspended coroutine.

	
print_stack(*, limit=None, file=None)

	Print the stack or traceback for this task’s coroutine.

This produces output similar to that of the traceback module, for the
frames retrieved by get_stack(). The limit argument is passed to
get_stack(). The file argument is an I/O stream to which the output
is written; by default output is written to sys.stderr.

Example: Parallel execution of tasks

Example executing 3 tasks (A, B, C) in parallel:

import asyncio

async def factorial(name, number):
 f = 1
 for i in range(2, number+1):
 print("Task %s: Compute factorial(%s)..." % (name, i))
 await asyncio.sleep(1)
 f *= i
 print("Task %s: factorial(%s) = %s" % (name, number, f))

loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.gather(
 factorial("A", 2),
 factorial("B", 3),
 factorial("C", 4),
))
loop.close()

Output:

Task A: Compute factorial(2)...
Task B: Compute factorial(2)...
Task C: Compute factorial(2)...
Task A: factorial(2) = 2
Task B: Compute factorial(3)...
Task C: Compute factorial(3)...
Task B: factorial(3) = 6
Task C: Compute factorial(4)...
Task C: factorial(4) = 24

A task is automatically scheduled for execution when it is created. The event
loop stops when all tasks are done.

Task functions

Note

In the functions below, the optional loop argument allows explicitly setting
the event loop object used by the underlying task or coroutine. If it’s
not provided, the default event loop is used.

	
asyncio.current_task(loop=None)

	Return the current running Task instance or None, if
no task is running.

If loop is None get_running_loop() is used to get
the current loop.

New in version 3.7.

	
asyncio.all_tasks(loop=None)

	Return a set of Task objects created for the loop.

If loop is None get_event_loop() is used for getting
current loop.

New in version 3.7.

	
asyncio.as_completed(fs, *, loop=None, timeout=None)

	Return an iterator whose values, when waited for, are Future
instances.

Raises asyncio.TimeoutError if the timeout occurs before all Futures
are done.

Example:

for f in as_completed(fs):
 result = await f # The 'await' may raise
 # Use result

Note

The futures f are not necessarily members of fs.

	
asyncio.ensure_future(coro_or_future, *, loop=None)

	Schedule the execution of a coroutine object: wrap it in
a future. Return a Task object.

If the argument is a Future, it is returned directly.

New in version 3.4.4.

Changed in version 3.5.1: The function accepts any awaitable object.

Note

create_task() (added in Python 3.7) is the preferable way
for spawning new tasks.

See also

The create_task() function and
AbstractEventLoop.create_task() method.

	
asyncio.wrap_future(future, *, loop=None)

	Wrap a concurrent.futures.Future object in a Future
object.

	
asyncio.gather(*coros_or_futures, loop=None, return_exceptions=False)

	Return a future aggregating results from the given coroutine objects or
futures.

All futures must share the same event loop. If all the tasks are done
successfully, the returned future’s result is the list of results (in the
order of the original sequence, not necessarily the order of results
arrival). If return_exceptions is true, exceptions in the tasks are
treated the same as successful results, and gathered in the result list;
otherwise, the first raised exception will be immediately propagated to the
returned future.

Cancellation: if the outer Future is cancelled, all children (that have not
completed yet) are also cancelled. If any child is cancelled, this is
treated as if it raised CancelledError – the
outer Future is not cancelled in this case. (This is to prevent the
cancellation of one child to cause other children to be cancelled.)

	
asyncio.iscoroutine(obj)

	Return True if obj is a coroutine object,
which may be based on a generator or an async def coroutine.

	
asyncio.iscoroutinefunction(func)

	Return True if func is determined to be a coroutine function, which may be a decorated generator function or an
async def function.

	
asyncio.run_coroutine_threadsafe(coro, loop)

	Submit a coroutine object to a given event loop.

Return a concurrent.futures.Future to access the result.

This function is meant to be called from a different thread than the one
where the event loop is running. Usage:

Create a coroutine
coro = asyncio.sleep(1, result=3)
Submit the coroutine to a given loop
future = asyncio.run_coroutine_threadsafe(coro, loop)
Wait for the result with an optional timeout argument
assert future.result(timeout) == 3

If an exception is raised in the coroutine, the returned future will be
notified. It can also be used to cancel the task in the event loop:

try:
 result = future.result(timeout)
except asyncio.TimeoutError:
 print('The coroutine took too long, cancelling the task...')
 future.cancel()
except Exception as exc:
 print('The coroutine raised an exception: {!r}'.format(exc))
else:
 print('The coroutine returned: {!r}'.format(result))

See the concurrency and multithreading
section of the documentation.

Note

Unlike other functions from the module,
run_coroutine_threadsafe() requires the loop argument to
be passed explicitly.

New in version 3.5.1.

Transports and protocols (callback based API)

Source code: :source:`Lib/asyncio/transports.py`

Source code: :source:`Lib/asyncio/protocols.py`

Transports

Transports are classes provided by asyncio in order to abstract
various kinds of communication channels. You generally won’t instantiate
a transport yourself; instead, you will call an AbstractEventLoop method
which will create the transport and try to initiate the underlying
communication channel, calling you back when it succeeds.

Once the communication channel is established, a transport is always
paired with a protocol instance. The protocol can
then call the transport’s methods for various purposes.

asyncio currently implements transports for TCP, UDP, SSL, and
subprocess pipes. The methods available on a transport depend on
the transport’s kind.

The transport classes are not thread safe.

Changed in version 3.6: The socket option TCP_NODELAY is now set by default.

BaseTransport

	
class asyncio.BaseTransport

	Base class for transports.

	
close()

	Close the transport. If the transport has a buffer for outgoing
data, buffered data will be flushed asynchronously. No more data
will be received. After all buffered data is flushed, the
protocol’s connection_lost() method will be called with
None as its argument.

	
is_closing()

	Return True if the transport is closing or is closed.

New in version 3.5.1.

	
get_extra_info(name, default=None)

	Return optional transport information. name is a string representing
the piece of transport-specific information to get, default is the
value to return if the information doesn’t exist.

This method allows transport implementations to easily expose
channel-specific information.

	socket:

	'peername': the remote address to which the socket is connected,
result of socket.socket.getpeername() (None on error)

	'socket': socket.socket instance

	'sockname': the socket’s own address,
result of socket.socket.getsockname()

	SSL socket:

	'compression': the compression algorithm being used as a string,
or None if the connection isn’t compressed; result of
ssl.SSLSocket.compression()

	'cipher': a three-value tuple containing the name of the cipher
being used, the version of the SSL protocol that defines its use, and
the number of secret bits being used; result of
ssl.SSLSocket.cipher()

	'peercert': peer certificate; result of
ssl.SSLSocket.getpeercert()

	'sslcontext': ssl.SSLContext instance

	'ssl_object': ssl.SSLObject or ssl.SSLSocket
instance

	pipe:

	'pipe': pipe object

	subprocess:

	'subprocess': subprocess.Popen instance

	
set_protocol(protocol)

	Set a new protocol. Switching protocol should only be done when both
protocols are documented to support the switch.

New in version 3.5.3.

	
get_protocol()

	Return the current protocol.

New in version 3.5.3.

Changed in version 3.5.1: 'ssl_object' info was added to SSL sockets.

ReadTransport

	
class asyncio.ReadTransport

	Interface for read-only transports.

	
is_reading()

	Return True if the transport is receiving new data.

New in version 3.7.

	
pause_reading()

	Pause the receiving end of the transport. No data will be passed to
the protocol’s data_received() method until resume_reading()
is called.

Changed in version 3.7: The method is idempotent, i.e. it can be called when the
transport is already paused or closed.

	
resume_reading()

	Resume the receiving end. The protocol’s data_received() method
will be called once again if some data is available for reading.

Changed in version 3.7: The method is idempotent, i.e. it can be called when the
transport is already reading.

WriteTransport

	
class asyncio.WriteTransport

	Interface for write-only transports.

	
abort()

	Close the transport immediately, without waiting for pending operations
to complete. Buffered data will be lost. No more data will be received.
The protocol’s connection_lost() method will eventually be
called with None as its argument.

	
can_write_eof()

	Return True if the transport supports write_eof(),
False if not.

	
get_write_buffer_size()

	Return the current size of the output buffer used by the transport.

	
get_write_buffer_limits()

	Get the high- and low-water limits for write flow control. Return a
tuple (low, high) where low and high are positive number of
bytes.

Use set_write_buffer_limits() to set the limits.

New in version 3.4.2.

	
set_write_buffer_limits(high=None, low=None)

	Set the high- and low-water limits for write flow control.

These two values (measured in number of
bytes) control when the protocol’s
pause_writing() and resume_writing() methods are called.
If specified, the low-water limit must be less than or equal to the
high-water limit. Neither high nor low can be negative.

pause_writing() is called when the buffer size becomes greater
than or equal to the high value. If writing has been paused,
resume_writing() is called when the buffer size becomes less
than or equal to the low value.

The defaults are implementation-specific. If only the
high-water limit is given, the low-water limit defaults to an
implementation-specific value less than or equal to the
high-water limit. Setting high to zero forces low to zero as
well, and causes pause_writing() to be called whenever the
buffer becomes non-empty. Setting low to zero causes
resume_writing() to be called only once the buffer is empty.
Use of zero for either limit is generally sub-optimal as it
reduces opportunities for doing I/O and computation
concurrently.

Use get_write_buffer_limits() to get the limits.

	
write(data)

	Write some data bytes to the transport.

This method does not block; it buffers the data and arranges for it
to be sent out asynchronously.

	
writelines(list_of_data)

	Write a list (or any iterable) of data bytes to the transport.
This is functionally equivalent to calling write() on each
element yielded by the iterable, but may be implemented more efficiently.

	
write_eof()

	Close the write end of the transport after flushing buffered data.
Data may still be received.

This method can raise NotImplementedError if the transport
(e.g. SSL) doesn’t support half-closes.

DatagramTransport

	
DatagramTransport.sendto(data, addr=None)

	Send the data bytes to the remote peer given by addr (a
transport-dependent target address). If addr is None, the
data is sent to the target address given on transport creation.

This method does not block; it buffers the data and arranges for it
to be sent out asynchronously.

	
DatagramTransport.abort()

	Close the transport immediately, without waiting for pending operations
to complete. Buffered data will be lost. No more data will be received.
The protocol’s connection_lost() method will eventually be
called with None as its argument.

BaseSubprocessTransport

	
class asyncio.BaseSubprocessTransport

	
	
get_pid()

	Return the subprocess process id as an integer.

	
get_pipe_transport(fd)

	Return the transport for the communication pipe corresponding to the
integer file descriptor fd:

	0: readable streaming transport of the standard input (stdin),
or None if the subprocess was not created with stdin=PIPE

	1: writable streaming transport of the standard output (stdout),
or None if the subprocess was not created with stdout=PIPE

	2: writable streaming transport of the standard error (stderr),
or None if the subprocess was not created with stderr=PIPE

	other fd: None

	
get_returncode()

	Return the subprocess returncode as an integer or None
if it hasn’t returned, similarly to the
subprocess.Popen.returncode attribute.

	
kill()

	Kill the subprocess, as in subprocess.Popen.kill().

On POSIX systems, the function sends SIGKILL to the subprocess.
On Windows, this method is an alias for terminate().

	
send_signal(signal)

	Send the signal number to the subprocess, as in
subprocess.Popen.send_signal().

	
terminate()

	Ask the subprocess to stop, as in subprocess.Popen.terminate().
This method is an alias for the close() method.

On POSIX systems, this method sends SIGTERM to the subprocess.
On Windows, the Windows API function TerminateProcess() is called to
stop the subprocess.

	
close()

	Ask the subprocess to stop by calling the terminate() method if the
subprocess hasn’t returned yet, and close transports of all pipes
(stdin, stdout and stderr).

Protocols

asyncio provides base classes that you can subclass to implement
your network protocols. Those classes are used in conjunction with
transports (see below): the protocol parses incoming
data and asks for the writing of outgoing data, while the transport is
responsible for the actual I/O and buffering.

When subclassing a protocol class, it is recommended you override certain
methods. Those methods are callbacks: they will be called by the transport
on certain events (for example when some data is received); you shouldn’t
call them yourself, unless you are implementing a transport.

Note

All callbacks have default implementations, which are empty. Therefore,
you only need to implement the callbacks for the events in which you
are interested.

Protocol classes

	
class asyncio.Protocol

	The base class for implementing streaming protocols (for use with
e.g. TCP and SSL transports).

	
class asyncio.BufferedProtocol

	A base class for implementing streaming protocols with manual
control of the receive buffer.

New in version 3.7: Important: this has been added to asyncio in Python 3.7
on a provisional basis! Treat it as an experimental API that
might be changed or removed in Python 3.8.

	
class asyncio.DatagramProtocol

	The base class for implementing datagram protocols (for use with
e.g. UDP transports).

	
class asyncio.SubprocessProtocol

	The base class for implementing protocols communicating with child
processes (through a set of unidirectional pipes).

Connection callbacks

These callbacks may be called on Protocol, DatagramProtocol
and SubprocessProtocol instances:

	
BaseProtocol.connection_made(transport)

	Called when a connection is made.

The transport argument is the transport representing the
connection. You are responsible for storing it somewhere
(e.g. as an attribute) if you need to.

	
BaseProtocol.connection_lost(exc)

	Called when the connection is lost or closed.

The argument is either an exception object or None.
The latter means a regular EOF is received, or the connection was
aborted or closed by this side of the connection.

connection_made() and connection_lost()
are called exactly once per successful connection. All other callbacks will be
called between those two methods, which allows for easier resource management
in your protocol implementation.

The following callbacks may be called only on SubprocessProtocol
instances:

	
SubprocessProtocol.pipe_data_received(fd, data)

	Called when the child process writes data into its stdout or stderr pipe.
fd is the integer file descriptor of the pipe. data is a non-empty
bytes object containing the data.

	
SubprocessProtocol.pipe_connection_lost(fd, exc)

	Called when one of the pipes communicating with the child process
is closed. fd is the integer file descriptor that was closed.

	
SubprocessProtocol.process_exited()

	Called when the child process has exited.

Streaming protocols

The following callbacks are called on Protocol instances:

	
Protocol.data_received(data)

	Called when some data is received. data is a non-empty bytes object
containing the incoming data.

Note

Whether the data is buffered, chunked or reassembled depends on
the transport. In general, you shouldn’t rely on specific semantics
and instead make your parsing generic and flexible enough. However,
data is always received in the correct order.

	
Protocol.eof_received()

	Called when the other end signals it won’t send any more data
(for example by calling write_eof(), if the other end also uses
asyncio).

This method may return a false value (including None), in which case
the transport will close itself. Conversely, if this method returns a
true value, closing the transport is up to the protocol. Since the
default implementation returns None, it implicitly closes the connection.

Note

Some transports such as SSL don’t support half-closed connections,
in which case returning true from this method will not prevent closing
the connection.

data_received() can be called an arbitrary number of times during
a connection. However, eof_received() is called at most once
and, if called, data_received() won’t be called after it.

State machine:

start -> connection_made
 [-> data_received]*
 [-> eof_received]?
-> connection_lost -> end

Streaming protocols with manual receive buffer control

New in version 3.7: Important: BufferedProtocol has been added to
asyncio in Python 3.7 on a provisional basis! Consider it as an
experimental API that might be changed or removed in Python 3.8.

Event methods, such as AbstractEventLoop.create_server() and
AbstractEventLoop.create_connection(), accept factories that
return protocols that implement this interface.

The idea of BufferedProtocol is that it allows to manually allocate
and control the receive buffer. Event loops can then use the buffer
provided by the protocol to avoid unnecessary data copies. This
can result in noticeable performance improvement for protocols that
receive big amounts of data. Sophisticated protocols can allocate
the buffer only once at creation time.

The following callbacks are called on BufferedProtocol
instances:

	
BufferedProtocol.get_buffer()

	Called to allocate a new receive buffer. Must return an object
that implements the buffer protocol.

	
BufferedProtocol.buffer_updated(nbytes)

	Called when the buffer was updated with the received data.

nbytes is the total number of bytes that were written to the buffer.

	
BufferedProtocol.eof_received()

	See the documentation of the Protocol.eof_received() method.

get_buffer() can be called an arbitrary number of times during
a connection. However, eof_received() is called at most once
and, if called, get_buffer() and buffer_updated()
won’t be called after it.

State machine:

start -> connection_made
 [-> get_buffer
 [-> buffer_updated]?
]*
 [-> eof_received]?
-> connection_lost -> end

Datagram protocols

The following callbacks are called on DatagramProtocol instances.

	
DatagramProtocol.datagram_received(data, addr)

	Called when a datagram is received. data is a bytes object containing
the incoming data. addr is the address of the peer sending the data;
the exact format depends on the transport.

	
DatagramProtocol.error_received(exc)

	Called when a previous send or receive operation raises an
OSError. exc is the OSError instance.

This method is called in rare conditions, when the transport (e.g. UDP)
detects that a datagram couldn’t be delivered to its recipient.
In many conditions though, undeliverable datagrams will be silently
dropped.

Flow control callbacks

These callbacks may be called on Protocol,
DatagramProtocol and SubprocessProtocol instances:

	
BaseProtocol.pause_writing()

	Called when the transport’s buffer goes over the high-water mark.

	
BaseProtocol.resume_writing()

	Called when the transport’s buffer drains below the low-water mark.

pause_writing() and resume_writing() calls are paired –
pause_writing() is called once when the buffer goes strictly over
the high-water mark (even if subsequent writes increases the buffer size
even more), and eventually resume_writing() is called once when the
buffer size reaches the low-water mark.

Note

If the buffer size equals the high-water mark,
pause_writing() is not called – it must go strictly over.
Conversely, resume_writing() is called when the buffer size is
equal or lower than the low-water mark. These end conditions
are important to ensure that things go as expected when either
mark is zero.

Note

On BSD systems (OS X, FreeBSD, etc.) flow control is not supported
for DatagramProtocol, because send failures caused by
writing too many packets cannot be detected easily. The socket
always appears ‘ready’ and excess packets are dropped; an
OSError with errno set to errno.ENOBUFS may or
may not be raised; if it is raised, it will be reported to
DatagramProtocol.error_received() but otherwise ignored.

Coroutines and protocols

Coroutines can be scheduled in a protocol method using ensure_future(),
but there is no guarantee made about the execution order. Protocols are not
aware of coroutines created in protocol methods and so will not wait for them.

To have a reliable execution order,
use stream objects in a
coroutine with await. For example, the StreamWriter.drain()
coroutine can be used to wait until the write buffer is flushed.

Protocol examples

TCP echo client protocol

TCP echo client using the AbstractEventLoop.create_connection() method, send
data and wait until the connection is closed:

import asyncio

class EchoClientProtocol(asyncio.Protocol):
 def __init__(self, message, loop):
 self.message = message
 self.loop = loop

 def connection_made(self, transport):
 transport.write(self.message.encode())
 print('Data sent: {!r}'.format(self.message))

 def data_received(self, data):
 print('Data received: {!r}'.format(data.decode()))

 def connection_lost(self, exc):
 print('The server closed the connection')
 print('Stop the event loop')
 self.loop.stop()

loop = asyncio.get_event_loop()
message = 'Hello World!'
coro = loop.create_connection(lambda: EchoClientProtocol(message, loop),
 '127.0.0.1', 8888)
loop.run_until_complete(coro)
loop.run_forever()
loop.close()

The event loop is running twice. The
run_until_complete() method is preferred in this short
example to raise an exception if the server is not listening, instead of
having to write a short coroutine to handle the exception and stop the
running loop. At run_until_complete() exit, the loop is
no longer running, so there is no need to stop the loop in case of an error.

See also

The TCP echo client using streams
example uses the asyncio.open_connection() function.

TCP echo server protocol

TCP echo server using the AbstractEventLoop.create_server() method, send back
received data and close the connection:

import asyncio

class EchoServerClientProtocol(asyncio.Protocol):
 def connection_made(self, transport):
 peername = transport.get_extra_info('peername')
 print('Connection from {}'.format(peername))
 self.transport = transport

 def data_received(self, data):
 message = data.decode()
 print('Data received: {!r}'.format(message))

 print('Send: {!r}'.format(message))
 self.transport.write(data)

 print('Close the client socket')
 self.transport.close()

loop = asyncio.get_event_loop()
Each client connection will create a new protocol instance
coro = loop.create_server(EchoServerClientProtocol, '127.0.0.1', 8888)
server = loop.run_until_complete(coro)

Serve requests until Ctrl+C is pressed
print('Serving on {}'.format(server.sockets[0].getsockname()))
try:
 loop.run_forever()
except KeyboardInterrupt:
 pass

Close the server
server.close()
loop.run_until_complete(server.wait_closed())
loop.close()

Transport.close() can be called immediately after
WriteTransport.write() even if data are not sent yet on the socket: both
methods are asynchronous. await is not needed because these transport
methods are not coroutines.

See also

The TCP echo server using streams
example uses the asyncio.start_server() function.

UDP echo client protocol

UDP echo client using the AbstractEventLoop.create_datagram_endpoint()
method, send data and close the transport when we received the answer:

import asyncio

class EchoClientProtocol:
 def __init__(self, message, loop):
 self.message = message
 self.loop = loop
 self.transport = None

 def connection_made(self, transport):
 self.transport = transport
 print('Send:', self.message)
 self.transport.sendto(self.message.encode())

 def datagram_received(self, data, addr):
 print("Received:", data.decode())

 print("Close the socket")
 self.transport.close()

 def error_received(self, exc):
 print('Error received:', exc)

 def connection_lost(self, exc):
 print("Socket closed, stop the event loop")
 loop = asyncio.get_event_loop()
 loop.stop()

loop = asyncio.get_event_loop()
message = "Hello World!"
connect = loop.create_datagram_endpoint(
 lambda: EchoClientProtocol(message, loop),
 remote_addr=('127.0.0.1', 9999))
transport, protocol = loop.run_until_complete(connect)
loop.run_forever()
transport.close()
loop.close()

UDP echo server protocol

UDP echo server using the AbstractEventLoop.create_datagram_endpoint()
method, send back received data:

import asyncio

class EchoServerProtocol:
 def connection_made(self, transport):
 self.transport = transport

 def datagram_received(self, data, addr):
 message = data.decode()
 print('Received %r from %s' % (message, addr))
 print('Send %r to %s' % (message, addr))
 self.transport.sendto(data, addr)

loop = asyncio.get_event_loop()
print("Starting UDP server")
One protocol instance will be created to serve all client requests
listen = loop.create_datagram_endpoint(
 EchoServerProtocol, local_addr=('127.0.0.1', 9999))
transport, protocol = loop.run_until_complete(listen)

try:
 loop.run_forever()
except KeyboardInterrupt:
 pass

transport.close()
loop.close()

Register an open socket to wait for data using a protocol

Wait until a socket receives data using the
AbstractEventLoop.create_connection() method with a protocol, and then close
the event loop

import asyncio
from socket import socketpair

Create a pair of connected sockets
rsock, wsock = socketpair()
loop = asyncio.get_event_loop()

class MyProtocol(asyncio.Protocol):
 transport = None

 def connection_made(self, transport):
 self.transport = transport

 def data_received(self, data):
 print("Received:", data.decode())

 # We are done: close the transport (it will call connection_lost())
 self.transport.close()

 def connection_lost(self, exc):
 # The socket has been closed, stop the event loop
 loop.stop()

Register the socket to wait for data
connect_coro = loop.create_connection(MyProtocol, sock=rsock)
transport, protocol = loop.run_until_complete(connect_coro)

Simulate the reception of data from the network
loop.call_soon(wsock.send, 'abc'.encode())

Run the event loop
loop.run_forever()

We are done, close sockets and the event loop
rsock.close()
wsock.close()
loop.close()

See also

The watch a file descriptor for read events example uses the low-level
AbstractEventLoop.add_reader() method to register the file descriptor of a
socket.

The register an open socket to wait for data using streams example uses high-level streams
created by the open_connection() function in a coroutine.

Streams (coroutine based API)

Source code: :source:`Lib/asyncio/streams.py`

Stream functions

Note

The top-level functions in this module are meant as convenience wrappers
only; there’s really nothing special there, and if they don’t do
exactly what you want, feel free to copy their code.

StreamReader

	
class asyncio.StreamReader(limit=None, loop=None)

	This class is not thread safe.

	
exception()

	Get the exception.

	
feed_eof()

	Acknowledge the EOF.

	
feed_data(data)

	Feed data bytes in the internal buffer. Any operations waiting
for the data will be resumed.

	
set_exception(exc)

	Set the exception.

	
set_transport(transport)

	Set the transport.

	
at_eof()

	Return True if the buffer is empty and feed_eof() was called.

StreamWriter

	
class asyncio.StreamWriter(transport, protocol, reader, loop)

	Wraps a Transport.

This exposes write(), writelines(), can_write_eof(),
write_eof(), get_extra_info() and close(). It adds
drain() which returns an optional Future on which you can
wait for flow control. It also adds a transport attribute which references
the Transport directly.

This class is not thread safe.

	
transport

	Transport.

	
can_write_eof()

	Return True if the transport supports write_eof(),
False if not. See WriteTransport.can_write_eof().

	
close()

	Close the transport: see BaseTransport.close().

	
is_closing()

	Return True if the writer is closing or is closed.

New in version 3.7.

	
get_extra_info(name, default=None)

	Return optional transport information: see
BaseTransport.get_extra_info().

	
write(data)

	Write some data bytes to the transport: see
WriteTransport.write().

	
writelines(data)

	Write a list (or any iterable) of data bytes to the transport:
see WriteTransport.writelines().

	
write_eof()

	Close the write end of the transport after flushing buffered data:
see WriteTransport.write_eof().

StreamReaderProtocol

	
class asyncio.StreamReaderProtocol(stream_reader, client_connected_cb=None, loop=None)

	Trivial helper class to adapt between Protocol and
StreamReader. Subclass of Protocol.

stream_reader is a StreamReader instance, client_connected_cb
is an optional function called with (stream_reader, stream_writer) when a
connection is made, loop is the event loop instance to use.

(This is a helper class instead of making StreamReader itself a
Protocol subclass, because the StreamReader has other
potential uses, and to prevent the user of the StreamReader from
accidentally calling inappropriate methods of the protocol.)

IncompleteReadError

	
exception asyncio.IncompleteReadError

	
Incomplete read error, subclass of EOFError.

	
expected

	Total number of expected bytes (int).

	
partial

	Read bytes string before the end of stream was reached (bytes).

LimitOverrunError

	
exception asyncio.LimitOverrunError

	Reached the buffer limit while looking for a separator.

	
consumed

	Total number of to be consumed bytes.

Stream examples

TCP echo client using streams

TCP echo client using the asyncio.open_connection() function:

import asyncio

async def tcp_echo_client(message, loop):
 reader, writer = await asyncio.open_connection('127.0.0.1', 8888,
 loop=loop)

 print('Send: %r' % message)
 writer.write(message.encode())

 data = await reader.read(100)
 print('Received: %r' % data.decode())

 print('Close the socket')
 writer.close()

message = 'Hello World!'
loop = asyncio.get_event_loop()
loop.run_until_complete(tcp_echo_client(message, loop))
loop.close()

See also

The TCP echo client protocol
example uses the AbstractEventLoop.create_connection() method.

TCP echo server using streams

TCP echo server using the asyncio.start_server() function:

import asyncio

async def handle_echo(reader, writer):
 data = await reader.read(100)
 message = data.decode()
 addr = writer.get_extra_info('peername')
 print("Received %r from %r" % (message, addr))

 print("Send: %r" % message)
 writer.write(data)
 await writer.drain()

 print("Close the client socket")
 writer.close()

loop = asyncio.get_event_loop()
coro = asyncio.start_server(handle_echo, '127.0.0.1', 8888, loop=loop)
server = loop.run_until_complete(coro)

Serve requests until Ctrl+C is pressed
print('Serving on {}'.format(server.sockets[0].getsockname()))
try:
 loop.run_forever()
except KeyboardInterrupt:
 pass

Close the server
server.close()
loop.run_until_complete(server.wait_closed())
loop.close()

See also

The TCP echo server protocol
example uses the AbstractEventLoop.create_server() method.

Get HTTP headers

Simple example querying HTTP headers of the URL passed on the command line:

import asyncio
import urllib.parse
import sys

@asyncio.coroutine
def print_http_headers(url):
 url = urllib.parse.urlsplit(url)
 if url.scheme == 'https':
 connect = asyncio.open_connection(url.hostname, 443, ssl=True)
 else:
 connect = asyncio.open_connection(url.hostname, 80)
 reader, writer = await connect
 query = ('HEAD {path} HTTP/1.0\r\n'
 'Host: {hostname}\r\n'
 '\r\n').format(path=url.path or '/', hostname=url.hostname)
 writer.write(query.encode('latin-1'))
 while True:
 line = await reader.readline()
 if not line:
 break
 line = line.decode('latin1').rstrip()
 if line:
 print('HTTP header> %s' % line)

 # Ignore the body, close the socket
 writer.close()

url = sys.argv[1]
loop = asyncio.get_event_loop()
task = asyncio.ensure_future(print_http_headers(url))
loop.run_until_complete(task)
loop.close()

Usage:

python example.py http://example.com/path/page.html

or with HTTPS:

python example.py https://example.com/path/page.html

Register an open socket to wait for data using streams

Coroutine waiting until a socket receives data using the
open_connection() function:

import asyncio
from socket import socketpair

async def wait_for_data(loop):
 # Create a pair of connected sockets
 rsock, wsock = socketpair()

 # Register the open socket to wait for data
 reader, writer = await asyncio.open_connection(sock=rsock, loop=loop)

 # Simulate the reception of data from the network
 loop.call_soon(wsock.send, 'abc'.encode())

 # Wait for data
 data = await reader.read(100)

 # Got data, we are done: close the socket
 print("Received:", data.decode())
 writer.close()

 # Close the second socket
 wsock.close()

loop = asyncio.get_event_loop()
loop.run_until_complete(wait_for_data(loop))
loop.close()

See also

The register an open socket to wait for data using a protocol example uses a low-level protocol created by the
AbstractEventLoop.create_connection() method.

The watch a file descriptor for read events example uses the low-level
AbstractEventLoop.add_reader() method to register the file descriptor of a
socket.

Subprocess

Source code: :source:`Lib/asyncio/subprocess.py`

Windows event loop

On Windows, the default event loop is SelectorEventLoop which does not
support subprocesses. ProactorEventLoop should be used instead.
Example to use it on Windows:

import asyncio, sys

if sys.platform == 'win32':
 loop = asyncio.ProactorEventLoop()
 asyncio.set_event_loop(loop)

See also

Available event loops and Platform
support.

Create a subprocess: high-level API using Process

Use the AbstractEventLoop.connect_read_pipe() and
AbstractEventLoop.connect_write_pipe() methods to connect pipes.

Create a subprocess: low-level API using subprocess.Popen

Run subprocesses asynchronously using the subprocess module.

See also

The AbstractEventLoop.connect_read_pipe() and
AbstractEventLoop.connect_write_pipe() methods.

Constants

	
asyncio.subprocess.PIPE

	Special value that can be used as the stdin, stdout or stderr argument
to create_subprocess_shell() and create_subprocess_exec() and
indicates that a pipe to the standard stream should be opened.

	
asyncio.subprocess.STDOUT

	Special value that can be used as the stderr argument to
create_subprocess_shell() and create_subprocess_exec() and
indicates that standard error should go into the same handle as standard
output.

	
asyncio.subprocess.DEVNULL

	Special value that can be used as the stdin, stdout or stderr argument
to create_subprocess_shell() and create_subprocess_exec() and
indicates that the special file os.devnull will be used.

Process

	
class asyncio.subprocess.Process

	A subprocess created by the create_subprocess_exec() or the
create_subprocess_shell() function.

The API of the Process class was designed to be
close to the API of the subprocess.Popen class, but there are some
differences:

	There is no explicit poll() method

	The communicate() and
wait() methods don’t take a timeout parameter:
use the wait_for() function

	The universal_newlines parameter is not supported (only bytes strings
are supported)

	The wait() method of
the Process class is asynchronous whereas the
wait() method of the Popen
class is implemented as a busy loop.

This class is not thread safe. See also the
Subprocess and threads section.

	
send_signal(signal)

	Sends the signal signal to the child process.

Note

On Windows, SIGTERM is an alias for terminate().
CTRL_C_EVENT and CTRL_BREAK_EVENT can be sent to processes
started with a creationflags parameter which includes
CREATE_NEW_PROCESS_GROUP.

	
terminate()

	Stop the child. On Posix OSs the method sends signal.SIGTERM
to the child. On Windows the Win32 API function
TerminateProcess() is called to stop the child.

	
kill()

	Kills the child. On Posix OSs the function sends SIGKILL to
the child. On Windows kill() is an alias for terminate().

	
stdin

	Standard input stream (StreamWriter), None if the process
was created with stdin=None.

	
stdout

	Standard output stream (StreamReader), None if the process
was created with stdout=None.

	
stderr

	Standard error stream (StreamReader), None if the process
was created with stderr=None.

Warning

Use the communicate() method rather than .stdin.write, .stdout.read or .stderr.read
to avoid deadlocks due to streams pausing reading or writing and blocking
the child process.

	
pid

	The identifier of the process.

Note that for processes created by the create_subprocess_shell()
function, this attribute is the process identifier of the spawned shell.

	
returncode

	Return code of the process when it exited. A None value indicates
that the process has not terminated yet.

A negative value -N indicates that the child was terminated by signal
N (Unix only).

Subprocess and threads

asyncio supports running subprocesses from different threads, but there
are limits:

	An event loop must run in the main thread

	The child watcher must be instantiated in the main thread, before executing
subprocesses from other threads. Call the get_child_watcher()
function in the main thread to instantiate the child watcher.

The asyncio.subprocess.Process class is not thread safe.

See also

The Concurrency and multithreading in asyncio section.

Subprocess examples

Subprocess using transport and protocol

Example of a subprocess protocol using to get the output of a subprocess and to
wait for the subprocess exit. The subprocess is created by the
AbstractEventLoop.subprocess_exec() method:

import asyncio
import sys

class DateProtocol(asyncio.SubprocessProtocol):
 def __init__(self, exit_future):
 self.exit_future = exit_future
 self.output = bytearray()

 def pipe_data_received(self, fd, data):
 self.output.extend(data)

 def process_exited(self):
 self.exit_future.set_result(True)

async def get_date(loop):
 code = 'import datetime; print(datetime.datetime.now())'
 exit_future = asyncio.Future(loop=loop)

 # Create the subprocess controlled by the protocol DateProtocol,
 # redirect the standard output into a pipe
 transport, protocol = await loop.subprocess_exec(
 lambda: DateProtocol(exit_future),
 sys.executable, '-c', code,
 stdin=None, stderr=None)

 # Wait for the subprocess exit using the process_exited() method
 # of the protocol
 await exit_future

 # Close the stdout pipe
 transport.close()

 # Read the output which was collected by the pipe_data_received()
 # method of the protocol
 data = bytes(protocol.output)
 return data.decode('ascii').rstrip()

if sys.platform == "win32":
 loop = asyncio.ProactorEventLoop()
 asyncio.set_event_loop(loop)
else:
 loop = asyncio.get_event_loop()

date = loop.run_until_complete(get_date(loop))
print("Current date: %s" % date)
loop.close()

Subprocess using streams

Example using the Process class to control the
subprocess and the StreamReader class to read from the standard
output. The subprocess is created by the create_subprocess_exec()
function:

import asyncio.subprocess
import sys

@asyncio.coroutine
def get_date():
 code = 'import datetime; print(datetime.datetime.now())'

 # Create the subprocess, redirect the standard output into a pipe
 proc = await asyncio.create_subprocess_exec(
 sys.executable, '-c', code,
 stdout=asyncio.subprocess.PIPE)

 # Read one line of output
 data = await proc.stdout.readline()
 line = data.decode('ascii').rstrip()

 # Wait for the subprocess exit
 await proc.wait()
 return line

if sys.platform == "win32":
 loop = asyncio.ProactorEventLoop()
 asyncio.set_event_loop(loop)
else:
 loop = asyncio.get_event_loop()

date = loop.run_until_complete(get_date())
print("Current date: %s" % date)
loop.close()

Queues

Source code: :source:`Lib/asyncio/queues.py`

Queues:

	Queue

	PriorityQueue

	LifoQueue

asyncio queue API was designed to be close to classes of the queue
module (Queue, PriorityQueue,
LifoQueue), but it has no timeout parameter. The
asyncio.wait_for() function can be used to cancel a task after a timeout.

Queue

	
class asyncio.Queue(maxsize=0, *, loop=None)

	A queue, useful for coordinating producer and consumer coroutines.

If maxsize is less than or equal to zero, the queue size is infinite. If
it is an integer greater than 0, then await put() will block
when the queue reaches maxsize, until an item is removed by get().

Unlike the standard library queue, you can reliably know this Queue’s
size with qsize(), since your single-threaded asyncio application won’t
be interrupted between calling qsize() and doing an operation on the
Queue.

This class is not thread safe.

Changed in version 3.4.4: New join() and task_done() methods.

	
empty()

	Return True if the queue is empty, False otherwise.

	
full()

	Return True if there are maxsize items in the queue.

Note

If the Queue was initialized with maxsize=0 (the default), then
full() is never True.

	
get_nowait()

	Remove and return an item from the queue.

Return an item if one is immediately available, else raise
QueueEmpty.

	
put_nowait(item)

	Put an item into the queue without blocking.

If no free slot is immediately available, raise QueueFull.

	
qsize()

	Number of items in the queue.

	
task_done()

	Indicate that a formerly enqueued task is complete.

Used by queue consumers. For each get() used to fetch a task, a
subsequent call to task_done() tells the queue that the processing
on the task is complete.

If a join() is currently blocking, it will resume when all items
have been processed (meaning that a task_done() call was received
for every item that had been put() into the queue).

Raises ValueError if called more times than there were items
placed in the queue.

New in version 3.4.4.

	
maxsize

	Number of items allowed in the queue.

PriorityQueue

	
class asyncio.PriorityQueue

	A subclass of Queue; retrieves entries in priority order (lowest
first).

Entries are typically tuples of the form: (priority number, data).

LifoQueue

	
class asyncio.LifoQueue

	A subclass of Queue that retrieves most recently added entries
first.

Exceptions

	
exception asyncio.QueueEmpty

	Exception raised when the get_nowait() method is called on a
Queue object which is empty.

	
exception asyncio.QueueFull

	Exception raised when the put_nowait() method is called on a
Queue object which is full.

Develop with asyncio

Asynchronous programming is different than classical “sequential” programming.
This page lists common traps and explains how to avoid them.

Debug mode of asyncio

The implementation of asyncio has been written for performance.
In order to ease the development of asynchronous code, you may wish to
enable debug mode.

To enable all debug checks for an application:

	Enable the asyncio debug mode globally by setting the environment variable
PYTHONASYNCIODEBUG to 1, using -X dev command line option
(see the -X option), or by calling
AbstractEventLoop.set_debug().

	Set the log level of the asyncio logger to
logging.DEBUG. For example, call
logging.basicConfig(level=logging.DEBUG) at startup.

	Configure the warnings module to display ResourceWarning
warnings. For example, use the -Wdefault command line option of Python to
display them.

Examples debug checks:

	Log coroutines defined but never “yielded from”

	call_soon() and call_at() methods
raise an exception if they are called from the wrong thread.

	Log the execution time of the selector

	Log callbacks taking more than 100 ms to be executed. The
AbstractEventLoop.slow_callback_duration attribute is the minimum
duration in seconds of “slow” callbacks.

	ResourceWarning warnings are emitted when transports and event loops
are not closed explicitly.

Changed in version 3.7: The new -X dev command line option can now also be used to enable
the debug mode.

See also

The AbstractEventLoop.set_debug() method and the asyncio logger.

Cancellation

Cancellation of tasks is not common in classic programming. In asynchronous
programming, not only is it something common, but you have to prepare your
code to handle it.

Futures and tasks can be cancelled explicitly with their Future.cancel()
method. The wait_for() function cancels the waited task when the timeout
occurs. There are many other cases where a task can be cancelled indirectly.

Don’t call set_result() or set_exception() method
of Future if the future is cancelled: it would fail with an exception.
For example, write:

if not fut.cancelled():
 fut.set_result('done')

Don’t schedule directly a call to the set_result() or the
set_exception() method of a future with
AbstractEventLoop.call_soon(): the future can be cancelled before its method
is called.

If you wait for a future, you should check early if the future was cancelled to
avoid useless operations. Example:

async def slow_operation(fut):
 if fut.cancelled():
 return
 # ... slow computation ...
 await fut
 # ...

The shield() function can also be used to ignore cancellation.

Concurrency and multithreading

An event loop runs in a thread and executes all callbacks and tasks in the same
thread. While a task is running in the event loop, no other task is running in
the same thread. But when the task uses await, the task is suspended
and the event loop executes the next task.

To schedule a callback from a different thread, the
AbstractEventLoop.call_soon_threadsafe() method should be used. Example:

loop.call_soon_threadsafe(callback, *args)

Most asyncio objects are not thread safe. You should only worry if you access
objects outside the event loop. For example, to cancel a future, don’t call
directly its Future.cancel() method, but:

loop.call_soon_threadsafe(fut.cancel)

To handle signals and to execute subprocesses, the event loop must be run in
the main thread.

To schedule a coroutine object from a different thread, the
run_coroutine_threadsafe() function should be used. It returns a
concurrent.futures.Future to access the result:

future = asyncio.run_coroutine_threadsafe(coro_func(), loop)
result = future.result(timeout) # Wait for the result with a timeout

The AbstractEventLoop.run_in_executor() method can be used with a thread pool
executor to execute a callback in different thread to not block the thread of
the event loop.

See also

The Synchronization primitives section describes ways
to synchronize tasks.

The Subprocess and threads section lists
asyncio limitations to run subprocesses from different threads.

Handle blocking functions correctly

Blocking functions should not be called directly. For example, if a function
blocks for 1 second, other tasks are delayed by 1 second which can have an
important impact on reactivity.

For networking and subprocesses, the asyncio module provides high-level
APIs like protocols.

An executor can be used to run a task in a different thread or even in a
different process, to not block the thread of the event loop. See the
AbstractEventLoop.run_in_executor() method.

See also

The Delayed calls section details how the
event loop handles time.

Logging

The asyncio module logs information with the logging module in
the logger 'asyncio'.

The default log level for the asyncio module is logging.INFO.
For those not wanting such verbosity from asyncio the log level can
be changed. For example, to change the level to logging.WARNING:

logging.getLogger('asyncio').setLevel(logging.WARNING)

Detect coroutine objects never scheduled

When a coroutine function is called and its result is not passed to
ensure_future() or to the AbstractEventLoop.create_task() method,
the execution of the coroutine object will never be scheduled which is
probably a bug. Enable the debug mode of asyncio
to log a warning to detect it.

Example with the bug:

import asyncio

async def test():
 print("never scheduled")

test()

Output in debug mode:

Coroutine test() at test.py:3 was never yielded from
Coroutine object created at (most recent call last):
 File "test.py", line 7, in <module>
 test()

The fix is to call the ensure_future() function or the
AbstractEventLoop.create_task() method with the coroutine object.

See also

Pending task destroyed.

Detect exceptions never consumed

Python usually calls sys.excepthook() on unhandled exceptions. If
Future.set_exception() is called, but the exception is never consumed,
sys.excepthook() is not called. Instead, a log is emitted when the future is deleted by the garbage collector, with the
traceback where the exception was raised.

Example of unhandled exception:

import asyncio

@asyncio.coroutine
def bug():
 raise Exception("not consumed")

loop = asyncio.get_event_loop()
asyncio.ensure_future(bug())
loop.run_forever()
loop.close()

Output:

Task exception was never retrieved
future: <Task finished coro=<coro() done, defined at asyncio/coroutines.py:139> exception=Exception('not consumed',)>
Traceback (most recent call last):
 File "asyncio/tasks.py", line 237, in _step
 result = next(coro)
 File "asyncio/coroutines.py", line 141, in coro
 res = func(*args, **kw)
 File "test.py", line 5, in bug
 raise Exception("not consumed")
Exception: not consumed

Enable the debug mode of asyncio to get the
traceback where the task was created. Output in debug mode:

Task exception was never retrieved
future: <Task finished coro=<bug() done, defined at test.py:3> exception=Exception('not consumed',) created at test.py:8>
source_traceback: Object created at (most recent call last):
 File "test.py", line 8, in <module>
 asyncio.ensure_future(bug())
Traceback (most recent call last):
 File "asyncio/tasks.py", line 237, in _step
 result = next(coro)
 File "asyncio/coroutines.py", line 79, in __next__
 return next(self.gen)
 File "asyncio/coroutines.py", line 141, in coro
 res = func(*args, **kw)
 File "test.py", line 5, in bug
 raise Exception("not consumed")
Exception: not consumed

There are different options to fix this issue. The first option is to chain the
coroutine in another coroutine and use classic try/except:

async def handle_exception():
 try:
 await bug()
 except Exception:
 print("exception consumed")

loop = asyncio.get_event_loop()
asyncio.ensure_future(handle_exception())
loop.run_forever()
loop.close()

Another option is to use the AbstractEventLoop.run_until_complete()
function:

task = asyncio.ensure_future(bug())
try:
 loop.run_until_complete(task)
except Exception:
 print("exception consumed")

See also

The Future.exception() method.

Chain coroutines correctly

When a coroutine function calls other coroutine functions and tasks, they
should be chained explicitly with await. Otherwise, the execution is
not guaranteed to be sequential.

Example with different bugs using asyncio.sleep() to simulate slow
operations:

import asyncio

async def create():
 await asyncio.sleep(3.0)
 print("(1) create file")

async def write():
 await asyncio.sleep(1.0)
 print("(2) write into file")

async def close():
 print("(3) close file")

async def test():
 asyncio.ensure_future(create())
 asyncio.ensure_future(write())
 asyncio.ensure_future(close())
 await asyncio.sleep(2.0)
 loop.stop()

loop = asyncio.get_event_loop()
asyncio.ensure_future(test())
loop.run_forever()
print("Pending tasks at exit: %s" % asyncio.Task.all_tasks(loop))
loop.close()

Expected output:

(1) create file
(2) write into file
(3) close file
Pending tasks at exit: set()

Actual output:

(3) close file
(2) write into file
Pending tasks at exit: {<Task pending create() at test.py:7 wait_for=<Future pending cb=[Task._wakeup()]>>}
Task was destroyed but it is pending!
task: <Task pending create() done at test.py:5 wait_for=<Future pending cb=[Task._wakeup()]>>

The loop stopped before the create() finished, close() has been called
before write(), whereas coroutine functions were called in this order:
create(), write(), close().

To fix the example, tasks must be marked with await:

async def test():
 await asyncio.ensure_future(create())
 await asyncio.ensure_future(write())
 await asyncio.ensure_future(close())
 await asyncio.sleep(2.0)
 loop.stop()

Or without asyncio.ensure_future():

async def test():
 await create()
 await write()
 await close()
 await asyncio.sleep(2.0)
 loop.stop()

Pending task destroyed

If a pending task is destroyed, the execution of its wrapped coroutine did not complete. It is probably a bug and so a warning is logged.

Example of log:

Task was destroyed but it is pending!
task: <Task pending coro=<kill_me() done, defined at test.py:5> wait_for=<Future pending cb=[Task._wakeup()]>>

Enable the debug mode of asyncio to get the
traceback where the task was created. Example of log in debug mode:

Task was destroyed but it is pending!
source_traceback: Object created at (most recent call last):
 File "test.py", line 15, in <module>
 task = asyncio.ensure_future(coro, loop=loop)
task: <Task pending coro=<kill_me() done, defined at test.py:5> wait_for=<Future pending cb=[Task._wakeup()] created at test.py:7> created at test.py:15>

See also

Detect coroutine objects never scheduled.

Close transports and event loops

When a transport is no more needed, call its close() method to release
resources. Event loops must also be closed explicitly.

If a transport or an event loop is not closed explicitly, a
ResourceWarning warning will be emitted in its destructor. By default,
ResourceWarning warnings are ignored. The Debug mode of asyncio section explains how to display them.

Synchronization primitives

Source code: :source:`Lib/asyncio/locks.py`

Locks:

	Lock

	Event

	Condition

Semaphores:

	Semaphore

	BoundedSemaphore

asyncio lock API was designed to be close to classes of the threading
module (Lock, Event,
Condition, Semaphore,
BoundedSemaphore), but it has no timeout parameter. The
asyncio.wait_for() function can be used to cancel a task after a timeout.

Lock

	
class asyncio.Lock(*, loop=None)

	Primitive lock objects.

A primitive lock is a synchronization primitive that is not owned by a
particular coroutine when locked. A primitive lock is in one of two states,
‘locked’ or ‘unlocked’.

The lock is created in the unlocked state.
It has two basic methods, acquire() and release().
When the state is unlocked, acquire() changes the state to
locked and returns immediately. When the state is locked, acquire() blocks
until a call to release() in another coroutine changes it to unlocked, then
the acquire() call resets it to locked and returns. The release() method
should only be called in the locked state; it changes the state to unlocked
and returns immediately. If an attempt is made to release an unlocked lock,
a RuntimeError will be raised.

When more than one coroutine is blocked in acquire() waiting for the state
to turn to unlocked, only one coroutine proceeds when a release() call
resets the state to unlocked; first coroutine which is blocked in acquire()
is being processed.

acquire() is a coroutine and should be called with await.

Locks support the context management protocol.

This class is not thread safe.

	
locked()

	Return True if the lock is acquired.

	
release()

	Release a lock.

When the lock is locked, reset it to unlocked, and return. If any other
coroutines are blocked waiting for the lock to become unlocked, allow
exactly one of them to proceed.

When invoked on an unlocked lock, a RuntimeError is raised.

There is no return value.

Event

	
class asyncio.Event(*, loop=None)

	An Event implementation, asynchronous equivalent to threading.Event.

Class implementing event objects. An event manages a flag that can be set to
true with the set() method and reset to false with the clear()
method. The wait() method blocks until the flag is true. The flag is
initially false.

This class is not thread safe.

	
clear()

	Reset the internal flag to false. Subsequently, coroutines calling
wait() will block until set() is called to set the internal
flag to true again.

	
is_set()

	Return True if and only if the internal flag is true.

	
set()

	Set the internal flag to true. All coroutines waiting for it to become
true are awakened. Coroutine that call wait() once the flag is true
will not block at all.

Condition

	
class asyncio.Condition(lock=None, *, loop=None)

	A Condition implementation, asynchronous equivalent to
threading.Condition.

This class implements condition variable objects. A condition variable
allows one or more coroutines to wait until they are notified by another
coroutine.

If the lock argument is given and not None, it must be a Lock
object, and it is used as the underlying lock. Otherwise,
a new Lock object is created and used as the underlying lock.

Conditions support the context management protocol.

This class is not thread safe.

	
notify(n=1)

	By default, wake up one coroutine waiting on this condition, if any.
If the calling coroutine has not acquired the lock when this method is
called, a RuntimeError is raised.

This method wakes up at most n of the coroutines waiting for the
condition variable; it is a no-op if no coroutines are waiting.

Note

An awakened coroutine does not actually return from its wait()
call until it can reacquire the lock. Since notify() does not
release the lock, its caller should.

	
locked()

	Return True if the underlying lock is acquired.

	
notify_all()

	Wake up all coroutines waiting on this condition. This method acts like
notify(), but wakes up all waiting coroutines instead of one. If the
calling coroutine has not acquired the lock when this method is called, a
RuntimeError is raised.

	
release()

	Release the underlying lock.

When the lock is locked, reset it to unlocked, and return. If any other
coroutines are blocked waiting for the lock to become unlocked, allow
exactly one of them to proceed.

When invoked on an unlocked lock, a RuntimeError is raised.

There is no return value.

Semaphore

	
class asyncio.Semaphore(value=1, *, loop=None)

	A Semaphore implementation.

A semaphore manages an internal counter which is decremented by each
acquire() call and incremented by each release() call. The
counter can never go below zero; when acquire() finds that it is zero,
it blocks, waiting until some other coroutine calls release().

The optional argument gives the initial value for the internal counter; it
defaults to 1. If the value given is less than 0, ValueError
is raised.

Semaphores support the context management protocol.

This class is not thread safe.

	
locked()

	Returns True if semaphore can not be acquired immediately.

	
release()

	Release a semaphore, incrementing the internal counter by one. When it
was zero on entry and another coroutine is waiting for it to become
larger than zero again, wake up that coroutine.

BoundedSemaphore

	
class asyncio.BoundedSemaphore(value=1, *, loop=None)

	A bounded semaphore implementation. Inherit from Semaphore.

This raises ValueError in release() if it would
increase the value above the initial value.

Bounded semapthores support the context management
protocol.

This class is not thread safe.

Using locks, conditions and semaphores in the async with statement

Lock, Condition, Semaphore, and
BoundedSemaphore objects can be used in async with
statements.

The acquire() method will be called when the block is entered,
and release() will be called when the block is exited. Hence,
the following snippet:

async with lock:
 # do something...

is equivalent to:

await lock.acquire()
try:
 # do something...
finally:
 lock.release()

Deprecated since version 3.7: Lock acquiring using await lock or yield from lock and
with statement (with await lock, with (yield from
lock)) are deprecated.

asynchat — Asynchronous socket command/response handler

Source code: :source:`Lib/asynchat.py`

Deprecated since version 3.6: Please use asyncio instead.

Note

This module exists for backwards compatibility only. For new code we
recommend using asyncio.

This module builds on the asyncore infrastructure, simplifying
asynchronous clients and servers and making it easier to handle protocols
whose elements are terminated by arbitrary strings, or are of variable length.
asynchat defines the abstract class async_chat that you
subclass, providing implementations of the collect_incoming_data() and
found_terminator() methods. It uses the same asynchronous loop as
asyncore, and the two types of channel, asyncore.dispatcher
and asynchat.async_chat, can freely be mixed in the channel map.
Typically an asyncore.dispatcher server channel generates new
asynchat.async_chat channel objects as it receives incoming
connection requests.

	
class asynchat.async_chat

	This class is an abstract subclass of asyncore.dispatcher. To make
practical use of the code you must subclass async_chat, providing
meaningful collect_incoming_data() and found_terminator()
methods.
The asyncore.dispatcher methods can be used, although not all make
sense in a message/response context.

Like asyncore.dispatcher, async_chat defines a set of
events that are generated by an analysis of socket conditions after a
select() call. Once the polling loop has been started the
async_chat object’s methods are called by the event-processing
framework with no action on the part of the programmer.

Two class attributes can be modified, to improve performance, or possibly
even to conserve memory.

	
ac_in_buffer_size

	The asynchronous input buffer size (default 4096).

	
ac_out_buffer_size

	The asynchronous output buffer size (default 4096).

Unlike asyncore.dispatcher, async_chat allows you to
define a FIFO queue of producers. A producer need
have only one method, more(), which should return data to be
transmitted on the channel.
The producer indicates exhaustion (i.e. that it contains no more data) by
having its more() method return the empty bytes object. At this point
the async_chat object removes the producer from the queue and starts
using the next producer, if any. When the producer queue is empty the
handle_write() method does nothing. You use the channel object’s
set_terminator() method to describe how to recognize the end of, or
an important breakpoint in, an incoming transmission from the remote
endpoint.

To build a functioning async_chat subclass your input methods
collect_incoming_data() and found_terminator() must handle the
data that the channel receives asynchronously. The methods are described
below.

	
async_chat.close_when_done()

	Pushes a None on to the producer queue. When this producer is popped off
the queue it causes the channel to be closed.

	
async_chat.collect_incoming_data(data)

	Called with data holding an arbitrary amount of received data. The
default method, which must be overridden, raises a
NotImplementedError exception.

	
async_chat.discard_buffers()

	In emergencies this method will discard any data held in the input and/or
output buffers and the producer queue.

	
async_chat.found_terminator()

	Called when the incoming data stream matches the termination condition set
by set_terminator(). The default method, which must be overridden,
raises a NotImplementedError exception. The buffered input data
should be available via an instance attribute.

	
async_chat.get_terminator()

	Returns the current terminator for the channel.

	
async_chat.push(data)

	Pushes data on to the channel’s queue to ensure its transmission.
This is all you need to do to have the channel write the data out to the
network, although it is possible to use your own producers in more complex
schemes to implement encryption and chunking, for example.

	
async_chat.push_with_producer(producer)

	Takes a producer object and adds it to the producer queue associated with
the channel. When all currently-pushed producers have been exhausted the
channel will consume this producer’s data by calling its more()
method and send the data to the remote endpoint.

	
async_chat.set_terminator(term)

	Sets the terminating condition to be recognized on the channel. term
may be any of three types of value, corresponding to three different ways
to handle incoming protocol data.

	term

	Description

	string

	Will call found_terminator() when the
string is found in the input stream

	integer

	Will call found_terminator() when the
indicated number of characters have been
received

	None

	The channel continues to collect data
forever

Note that any data following the terminator will be available for reading
by the channel after found_terminator() is called.

asynchat Example

The following partial example shows how HTTP requests can be read with
async_chat. A web server might create an
http_request_handler object for each incoming client connection.
Notice that initially the channel terminator is set to match the blank line at
the end of the HTTP headers, and a flag indicates that the headers are being
read.

Once the headers have been read, if the request is of type POST (indicating
that further data are present in the input stream) then the
Content-Length: header is used to set a numeric terminator to read the
right amount of data from the channel.

The handle_request() method is called once all relevant input has been
marshalled, after setting the channel terminator to None to ensure that
any extraneous data sent by the web client are ignored.

import asynchat

class http_request_handler(asynchat.async_chat):

 def __init__(self, sock, addr, sessions, log):
 asynchat.async_chat.__init__(self, sock=sock)
 self.addr = addr
 self.sessions = sessions
 self.ibuffer = []
 self.obuffer = b""
 self.set_terminator(b"\r\n\r\n")
 self.reading_headers = True
 self.handling = False
 self.cgi_data = None
 self.log = log

 def collect_incoming_data(self, data):
 """Buffer the data"""
 self.ibuffer.append(data)

 def found_terminator(self):
 if self.reading_headers:
 self.reading_headers = False
 self.parse_headers(b"".join(self.ibuffer))
 self.ibuffer = []
 if self.op.upper() == b"POST":
 clen = self.headers.getheader("content-length")
 self.set_terminator(int(clen))
 else:
 self.handling = True
 self.set_terminator(None)
 self.handle_request()
 elif not self.handling:
 self.set_terminator(None) # browsers sometimes over-send
 self.cgi_data = parse(self.headers, b"".join(self.ibuffer))
 self.handling = True
 self.ibuffer = []
 self.handle_request()

asyncore — Asynchronous socket handler

Source code: :source:`Lib/asyncore.py`

Deprecated since version 3.6: Please use asyncio instead.

Note

This module exists for backwards compatibility only. For new code we
recommend using asyncio.

This module provides the basic infrastructure for writing asynchronous socket
service clients and servers.

There are only two ways to have a program on a single processor do “more than
one thing at a time.” Multi-threaded programming is the simplest and most
popular way to do it, but there is another very different technique, that lets
you have nearly all the advantages of multi-threading, without actually using
multiple threads. It’s really only practical if your program is largely I/O
bound. If your program is processor bound, then pre-emptive scheduled threads
are probably what you really need. Network servers are rarely processor
bound, however.

If your operating system supports the select() system call in its I/O
library (and nearly all do), then you can use it to juggle multiple
communication channels at once; doing other work while your I/O is taking
place in the “background.” Although this strategy can seem strange and
complex, especially at first, it is in many ways easier to understand and
control than multi-threaded programming. The asyncore module solves
many of the difficult problems for you, making the task of building
sophisticated high-performance network servers and clients a snap. For
“conversational” applications and protocols the companion asynchat
module is invaluable.

The basic idea behind both modules is to create one or more network
channels, instances of class asyncore.dispatcher and
asynchat.async_chat. Creating the channels adds them to a global
map, used by the loop() function if you do not provide it with your own
map.

Once the initial channel(s) is(are) created, calling the loop() function
activates channel service, which continues until the last channel (including
any that have been added to the map during asynchronous service) is closed.

	
asyncore.loop([timeout[, use_poll[, map[, count]]]])

	Enter a polling loop that terminates after count passes or all open
channels have been closed. All arguments are optional. The count
parameter defaults to None, resulting in the loop terminating only when all
channels have been closed. The timeout argument sets the timeout
parameter for the appropriate select() or poll()
call, measured in seconds; the default is 30 seconds. The use_poll
parameter, if true, indicates that poll() should be used in
preference to select() (the default is False).

The map parameter is a dictionary whose items are the channels to watch.
As channels are closed they are deleted from their map. If map is
omitted, a global map is used. Channels (instances of
asyncore.dispatcher, asynchat.async_chat and subclasses
thereof) can freely be mixed in the map.

	
class asyncore.dispatcher

	The dispatcher class is a thin wrapper around a low-level socket
object. To make it more useful, it has a few methods for event-handling
which are called from the asynchronous loop. Otherwise, it can be treated
as a normal non-blocking socket object.

The firing of low-level events at certain times or in certain connection
states tells the asynchronous loop that certain higher-level events have
taken place. For example, if we have asked for a socket to connect to
another host, we know that the connection has been made when the socket
becomes writable for the first time (at this point you know that you may
write to it with the expectation of success). The implied higher-level
events are:

	Event

	Description

	handle_connect()

	Implied by the first read or write
event

	handle_close()

	Implied by a read event with no data
available

	handle_accepted()

	Implied by a read event on a listening
socket

During asynchronous processing, each mapped channel’s readable() and
writable() methods are used to determine whether the channel’s socket
should be added to the list of channels select()ed or
poll()ed for read and write events.

Thus, the set of channel events is larger than the basic socket events. The
full set of methods that can be overridden in your subclass follows:

	
handle_read()

	Called when the asynchronous loop detects that a read() call on the
channel’s socket will succeed.

	
handle_write()

	Called when the asynchronous loop detects that a writable socket can be
written. Often this method will implement the necessary buffering for
performance. For example:

def handle_write(self):
 sent = self.send(self.buffer)
 self.buffer = self.buffer[sent:]

	
handle_expt()

	Called when there is out of band (OOB) data for a socket connection. This
will almost never happen, as OOB is tenuously supported and rarely used.

	
handle_connect()

	Called when the active opener’s socket actually makes a connection. Might
send a “welcome” banner, or initiate a protocol negotiation with the
remote endpoint, for example.

	
handle_close()

	Called when the socket is closed.

	
handle_error()

	Called when an exception is raised and not otherwise handled. The default
version prints a condensed traceback.

	
handle_accept()

	Called on listening channels (passive openers) when a connection can be
established with a new remote endpoint that has issued a connect()
call for the local endpoint. Deprecated in version 3.2; use
handle_accepted() instead.

Deprecated since version 3.2.

	
handle_accepted(sock, addr)

	Called on listening channels (passive openers) when a connection has been
established with a new remote endpoint that has issued a connect()
call for the local endpoint. sock is a new socket object usable to
send and receive data on the connection, and addr is the address
bound to the socket on the other end of the connection.

New in version 3.2.

	
readable()

	Called each time around the asynchronous loop to determine whether a
channel’s socket should be added to the list on which read events can
occur. The default method simply returns True, indicating that by
default, all channels will be interested in read events.

	
writable()

	Called each time around the asynchronous loop to determine whether a
channel’s socket should be added to the list on which write events can
occur. The default method simply returns True, indicating that by
default, all channels will be interested in write events.

In addition, each channel delegates or extends many of the socket methods.
Most of these are nearly identical to their socket partners.

	
create_socket(family=socket.AF_INET, type=socket.SOCK_STREAM)

	This is identical to the creation of a normal socket, and will use the
same options for creation. Refer to the socket documentation for
information on creating sockets.

Changed in version 3.3: family and type arguments can be omitted.

	
connect(address)

	As with the normal socket object, address is a tuple with the first
element the host to connect to, and the second the port number.

	
send(data)

	Send data to the remote end-point of the socket.

	
recv(buffer_size)

	Read at most buffer_size bytes from the socket’s remote end-point. An
empty bytes object implies that the channel has been closed from the
other end.

Note that recv() may raise BlockingIOError , even though
select.select() or select.poll() has reported the socket
ready for reading.

	
listen(backlog)

	Listen for connections made to the socket. The backlog argument
specifies the maximum number of queued connections and should be at least
1; the maximum value is system-dependent (usually 5).

	
bind(address)

	Bind the socket to address. The socket must not already be bound. (The
format of address depends on the address family — refer to the
socket documentation for more information.) To mark
the socket as re-usable (setting the SO_REUSEADDR option), call
the dispatcher object’s set_reuse_addr() method.

	
accept()

	Accept a connection. The socket must be bound to an address and listening
for connections. The return value can be either None or a pair
(conn, address) where conn is a new socket object usable to send
and receive data on the connection, and address is the address bound to
the socket on the other end of the connection.
When None is returned it means the connection didn’t take place, in
which case the server should just ignore this event and keep listening
for further incoming connections.

	
close()

	Close the socket. All future operations on the socket object will fail.
The remote end-point will receive no more data (after queued data is
flushed). Sockets are automatically closed when they are
garbage-collected.

	
class asyncore.dispatcher_with_send

	A dispatcher subclass which adds simple buffered output capability,
useful for simple clients. For more sophisticated usage use
asynchat.async_chat.

	
class asyncore.file_dispatcher

	A file_dispatcher takes a file descriptor or file object along
with an optional map argument and wraps it for use with the poll()
or loop() functions. If provided a file object or anything with a
fileno() method, that method will be called and passed to the
file_wrapper constructor. Availability: UNIX.

	
class asyncore.file_wrapper

	A file_wrapper takes an integer file descriptor and calls os.dup() to
duplicate the handle so that the original handle may be closed independently
of the file_wrapper. This class implements sufficient methods to emulate a
socket for use by the file_dispatcher class. Availability: UNIX.

asyncore Example basic HTTP client

Here is a very basic HTTP client that uses the dispatcher class to
implement its socket handling:

import asyncore

class HTTPClient(asyncore.dispatcher):

 def __init__(self, host, path):
 asyncore.dispatcher.__init__(self)
 self.create_socket()
 self.connect((host, 80))
 self.buffer = bytes('GET %s HTTP/1.0\r\nHost: %s\r\n\r\n' %
 (path, host), 'ascii')

 def handle_connect(self):
 pass

 def handle_close(self):
 self.close()

 def handle_read(self):
 print(self.recv(8192))

 def writable(self):
 return (len(self.buffer) > 0)

 def handle_write(self):
 sent = self.send(self.buffer)
 self.buffer = self.buffer[sent:]

client = HTTPClient('www.python.org', '/')
asyncore.loop()

asyncore Example basic echo server

Here is a basic echo server that uses the dispatcher class to accept
connections and dispatches the incoming connections to a handler:

import asyncore

class EchoHandler(asyncore.dispatcher_with_send):

 def handle_read(self):
 data = self.recv(8192)
 if data:
 self.send(data)

class EchoServer(asyncore.dispatcher):

 def __init__(self, host, port):
 asyncore.dispatcher.__init__(self)
 self.create_socket()
 self.set_reuse_addr()
 self.bind((host, port))
 self.listen(5)

 def handle_accepted(self, sock, addr):
 print('Incoming connection from %s' % repr(addr))
 handler = EchoHandler(sock)

server = EchoServer('localhost', 8080)
asyncore.loop()

 _static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 asyncio: Notes for Developers

 		
 History of asyncio

 		
 PEPs

 		
 Releases

 		
 asyncio Concepts

 		
 asyncio library files

 		
 Alphabetical

 		
 By functionality

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

